From 324b9171aed00757e5391adf84de3864b0e45074 Mon Sep 17 00:00:00 2001 From: GitHub Action Date: Tue, 13 Feb 2024 08:21:38 +0000 Subject: [PATCH] refreshing index --- index.json | 1215 ++++++++++++++++++++++++++-------------------------- 1 file changed, 608 insertions(+), 607 deletions(-) diff --git a/index.json b/index.json index 0e20d84..e73bdc2 100644 --- a/index.json +++ b/index.json @@ -1,268 +1,273 @@ { "blocks": [ { - "path": "Connectors/BigQuery/Google BigQuery Import Table", - "displayName": "Google BigQuery Import Table", + "path": "Preparation/JSON/Normalise", + "displayName": "JSON Normalise", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "google", - "big", - "import", + "JSON", + "normalise", "table", - "query" + "semi", + "structured" ], - "category": "Connectors", - "description": "Allows to import a table from Google BigQuery.", - "subcategory": null, - "icon": "" + "category": "Preparation", + "description": "Normalise semi-structured JSON strings into a flat table, appending data record by record.", + "subcategory": "JSON", + "icon": "" }, { - "path": "Connectors/BigQuery/Google BigQuery Custom SQL", - "displayName": "Google BigQuery Custom SQL", + "path": "Preparation/Add row ID field", + "displayName": "Add row ID field", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "google", - "big", - "query", - "sql", - "custom" + "row", + "ID", + "sequence" ], - "category": "Connectors", - "description": "Executes a SQL query on Google BigQuery and imports the query results", + "category": "Preparation", + "description": "Adds a Row ID field with a sequential number.", "subcategory": null, - "icon": "" + "icon": null }, { - "path": "Connectors/Slack API WebClient", - "displayName": "Slack API WebClient", - "language": "PYTHON", + "path": "Preparation/Field Renamer", + "displayName": "Field Renamer", + "language": "R", "optionsVersion": 1, - "tags": [], - "category": "Connectors", - "description": "Allows you to call public Slack endpoints.", - "subcategory": "Slack", - "icon": "" + "tags": [ + "field", + "organiser", + "rename", + "name" + ], + "category": "Preparation", + "description": "Renames the fields of a data set given a list of current names and new names.", + "subcategory": null, + "icon": "" }, { - "path": "Connectors/Etherscan", - "displayName": "Etherscan", + "path": "Preparation/Pivot/Melt De-pivot", + "displayName": "Melt De-pivot", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "blockchain", - "ethereum", - "etherscan", - "crypto" + "pivot", + "depivot", + "melt", + "variable", + "fixed" ], - "category": "Connectors", - "description": "The Ethereum Blockchain Explorer.", - "subcategory": null, - "icon": "" + "category": "Preparation", + "description": "Keep all selected fixed fields in the output, de-pivot all other fields", + "subcategory": "Pivot", + "icon": "" }, { - "path": "Connectors/XPT Reader", - "displayName": "XPT Reader", - "language": "PYTHON", + "path": "Preparation/Join/Fuzzy Join", + "displayName": "Fuzzy Terms Join", + "language": "R", "optionsVersion": 1, "tags": [ - "xpt", - "xport", - "sas" + "fuzzy", + "join" ], - "category": "Connectors", - "description": "Reads a SAS Transport *xpt* file, extracting a dataset.", - "subcategory": null, - "icon": "" + "category": "Preparation", + "description": "Performs a join between the first (left) and second (right) input. The field on which the join is performed must be text containing multiple terms. The result will contain joined records based on how many terms they share, weighted by inverse document frequency.", + "subcategory": "Join", + "icon": "" }, { - "path": "Connectors/HubSpot", - "displayName": "HubSpot", + "path": "Preparation/Join/Interval Join", + "displayName": "Interval Join", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "hubspot", - "crm" + "inequality", + "interval", + "join" ], - "category": "Connectors", - "description": "Retrieves contacts, companies, deals and lists", - "subcategory": null, - "icon": "" + "category": "Preparation", + "description": "Performs a join between values in the first input and intervals in the second input. Rows are joined if the value is contained in an interval.", + "subcategory": "Join", + "icon": "" }, { - "path": "Connectors/Weather/OpenWeatherMap", - "displayName": "OpenWeatherMap", + "path": "Preparation/Join/Inequality Join", + "displayName": "Inequality Join", "language": "R", "optionsVersion": 1, "tags": [ - "weather", - "map", - "longitude", - "latitude", - "forecast" + "inequality", + "join" ], - "category": "Connectors", - "description": "Retrieves current weather and forecasts from OpenWeatherMap", - "subcategory": "Weather", - "icon": "" + "category": "Preparation", + "description": "Performs a join between the first (left) and second (right) input. The join can be performed using equality/inequality comparators ==, <=, >=, <, > , which means the result will be a constraint cartesian join including all records that match the inequalities.", + "subcategory": "Join", + "icon": "" }, { - "path": "Connectors/Trello", - "displayName": "Trello", + "path": "Preparation/URL Encode", + "displayName": "URL Encode", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "trello", - "board", - "card" + "URL", + "quote", + "encode" ], - "category": "Connectors", - "description": "Retrieves boards, lists and cards, and allows you to search in Trello.", + "category": "Preparation", + "description": "URL encode strings in a field using the UTF-8 encoding scheme", "subcategory": null, - "icon": "" + "icon": null }, { - "path": "Connectors/Jira", - "displayName": "Jira", + "path": "Preparation/ForEach/ForEach", + "displayName": "For Each (Separate Workflows)", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "jira", - "issue", - "bug" + "for", + "foreach", + "paramater", + "iteration" ], - "category": "Connectors", - "description": "Retrieves projects and issues from Jira", - "subcategory": null, - "icon": "" + "category": "Preparation", + "description": "Executes another Omniscope project multiple times, each time with a different set of parameter values.", + "subcategory": "Workflow", + "icon": "" }, { - "path": "Connectors/Overpass/Street Coordinates", - "displayName": "Overpass Street Coordinates", + "path": "Preparation/ForEach/ProjectParameters", + "displayName": "Project Parameters Batch Setting", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "overpass", - "street", - "coordinates", - "map" + "for", + "foreach", + "parameter", + "batch", + "iteration" ], - "category": "Connectors", - "description": "Finds all matching streets given a street name and requests multiple coordinates along the street using data from Overpass API. It will create a row for each point found that is part of a street that matches the given street name. The resulting rows will include the street name, the street Id and the coordinates of the point. The script needs an input with a field with the street name.", - "subcategory": "Overpass", - "icon": "" + "category": "Preparation", + "description": "", + "subcategory": "ForEach", + "icon": "" }, { - "path": "Connectors/YahooFinance", - "displayName": "Yahoo Finance", + "path": "Preparation/ForEach/ForEachMultiStage", + "displayName": "ForEach multi stage", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "stock", - "finance", - "ticker", - "price", - "yahoo" + "for", + "foreach", + "iteration", + "paramater", + "stage", + "orchestration" ], - "category": "Connectors", - "description": "Fetches price data for tickers from Yahoo Finance", - "subcategory": null, - "icon": "" + "category": "Preparation", + "description": "The ForEach multi stage block allows to orchestrate the execution of another Omniscope project and running the workflow multiple times, each time with a different set of parameter values. Unlike the ForEach block allows multiple stages of execution, executing/refreshing from source a different set of blocks in each stage.", + "subcategory": "ForEach", + "icon": "" }, { - "path": "Connectors/Flightstats/Airports", - "displayName": "Flightstats Airports", - "language": "R", + "path": "Preparation/Unescape HTML", + "displayName": "Unescape HTML", + "language": "PYTHON", "optionsVersion": 1, "tags": [ - "flightstats", - "airports" + "HTML", + "escape", + "unescape", + "encode", + "decode" ], - "category": "Connectors", - "description": "Downloads a list of airports as provided by flightstats (https://www.flightstats.com). The script needs your flightstats app id and key which needs to be obtained either through buying their service or signing up for a test account.", - "subcategory": "Flightstats", - "icon": "" + "category": "Preparation", + "description": "Convert all named and numeric character references to the corresponding Unicode characters", + "subcategory": null, + "icon": null }, { - "path": "Connectors/Flightstats/Airlines", - "displayName": "Flightstats Airlines", - "language": "R", + "path": "Preparation/Geo/Gridsquare", + "displayName": "Gridsquare", + "language": "PYTHON", "optionsVersion": 1, "tags": [ - "flightstats", - "airlines" + "gridsquare", + "maidenhead", + "coordinates", + "locator", + "latitude", + "longitude" ], - "category": "Connectors", - "description": "Downloads a list of airlines as provided by flightstats (https://www.flightstats.com). The script needs your flightstats app id and key which needs to be obtained either through buying their service or signing up for a test account.", - "subcategory": "Flightstats", - "icon": "" - }, - { - "path": "Connectors/Flightstats/Flights", - "displayName": "Flightstats Flights", - "language": "R", + "category": "Preparation", + "description": "Converts gridsquare / Maidenhead ", + "subcategory": "Geo", + "icon": "" + }, + { + "path": "Preparation/Geo/Shapefile", + "displayName": "Shapefile", + "language": "PYTHON", "optionsVersion": 1, "tags": [ - "flightstats", - "flights" + "shapefile", + "geo", + "geojson", + "shp" ], - "category": "Connectors", - "description": "Requests information about flights specified in the input data from flightstats (https://www.flightstats.com). If the flight exists the result will contain live information, otherwise it will not be part of it. The script needs your flightstats app id and key which needs to be obtained either through buying their service or signing up for a test account.", - "subcategory": "Flightstats", - "icon": "" + "category": "Preparation", + "description": "Match regions in shapefile with geographical points having latitude and longitude", + "subcategory": "Geo", + "icon": "" }, { - "path": "Connectors/Flipside", - "displayName": "Flipside", + "path": "Preparation/Split Address", + "displayName": "Split Address", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "flipside", - "crypto", - "analytics", - "blockchain" + "split", + "address", + "street", + "zip", + "country" ], - "category": "Connectors", - "description": "Executes a SQL query on Flipside and retrieves the blockchain data", + "category": "Preparation", + "description": "Splits an address field into streetname, streetnumber, and suffix.", "subcategory": null, - "icon": "" + "icon": "" }, { - "path": "Connectors/Dune", - "displayName": "Dune", - "language": "PYTHON", + "path": "Preparation/Standardisation/Standardise", + "displayName": "Standardise", + "language": "R", "optionsVersion": 1, "tags": [ - "dune", - "crypto", - "analytics", - "blockchain" + "standardise", + "normalise", + "range", + "interval" ], - "category": "Connectors", - "description": "Execute queries and retrieve blockchain data from any public query on dune.com, as well as any personal private queries your Dune account has access to", - "subcategory": null, - "icon": "https://dune.com/docs/images/dune-icon-only.png" + "category": "Preparation", + "description": "Standardises the values in the selected fields so that they are in the range between 0 and 1. I.e. The new value of the highest value in each field is going to be 1, and the lowest value 0. All other values are scaled proportionally.", + "subcategory": "Standardisation", + "icon": "" }, { - "path": "Connectors/Azure Data Lake Blob", - "displayName": "Azure Data Lake Storage Gen2 Blob", + "path": "Preparation/Unstack rows", + "displayName": "Unstack Records", "language": "PYTHON", "optionsVersion": 1, - "tags": [ - "azure", - "storage", - "lake", - "datalake", - "blob", - "gen2", - "parquet", - "csv" - ], - "category": "Connectors", - "description": "Storage Gen2 Blob connector to load a CSV or Parquet blob/file in Omniscope.", - "subcategory": "Azure", - "icon": "" + "tags": [], + "category": "Preparation", + "description": "Unstack all records by splitting on text fields with stacked values, filling records with empty strings where needed.", + "subcategory": null, + "icon": "" }, { "path": "Preparation/Interfaces/Kedro", @@ -280,288 +285,184 @@ "icon": "" }, { - "path": "Preparation/Standardisation/Standardise", - "displayName": "Standardise", - "language": "R", + "path": "Preparation/Partition", + "displayName": "Partition", + "language": "PYTHON", "optionsVersion": 1, "tags": [ - "standardise", - "normalise", - "range", - "interval" + "partition", + "division", + "grouping" ], "category": "Preparation", - "description": "Standardises the values in the selected fields so that they are in the range between 0 and 1. I.e. The new value of the highest value in each field is going to be 1, and the lowest value 0. All other values are scaled proportionally.", - "subcategory": "Standardisation", - "icon": "" + "description": "Partitions the data into chunks of the desired size. There will be a new field called \"Partition\" which contains a number unique to each partition.", + "subcategory": "Partition", + "icon": "" }, { - "path": "Preparation/Join/Interval Join", - "displayName": "Interval Join", + "path": "Analytics/Data Profiler", + "displayName": "Data Profiler", "language": "PYTHON", "optionsVersion": 1, - "tags": [ - "inequality", - "interval", - "join" - ], - "category": "Preparation", - "description": "Performs a join between values in the first input and intervals in the second input. Rows are joined if the value is contained in an interval.", - "subcategory": "Join", - "icon": "" + "tags": [], + "category": "Analytics", + "description": "Provides detailed statistics about a dataset", + "subcategory": null, + "icon": "" }, { - "path": "Preparation/Join/Inequality Join", - "displayName": "Inequality Join", + "path": "Analytics/Network Analysis/Attribute Analysis", + "displayName": "Attribute Analysis", "language": "R", "optionsVersion": 1, "tags": [ - "inequality", - "join" + "attribute", + "analysis", + "network", + "graph" ], - "category": "Preparation", - "description": "Performs a join between the first (left) and second (right) input. The join can be performed using equality/inequality comparators ==, <=, >=, <, > , which means the result will be a constraint cartesian join including all records that match the inequalities.", - "subcategory": "Join", - "icon": "" + "category": "Analytics", + "description": "Given a dataset in which each record represents an edge between two nodes of a network, and each node has an associated categorical attribute, the block analyses connections between attributes, based on connections between associated nodes. The result of the analysis is a list of records in which each record specifies a connection from one attribute to another. The connection contains a probability field, which gives an answer to the question that if a node has the specified categorical attribute, how probable it is that it has a connection to another node with the linked categorical attribute.", + "subcategory": "Network Analysis", + "icon": "" }, { - "path": "Preparation/Join/Fuzzy Join", - "displayName": "Fuzzy Terms Join", + "path": "Analytics/Network Analysis/TSNE", + "displayName": "TSNE", "language": "R", "optionsVersion": 1, "tags": [ - "fuzzy", - "join" + "relationship", + "analysis", + "network", + "graph" ], - "category": "Preparation", - "description": "Performs a join between the first (left) and second (right) input. The field on which the join is performed must be text containing multiple terms. The result will contain joined records based on how many terms they share, weighted by inverse document frequency.", - "subcategory": "Join", - "icon": "" + "category": "Analytics", + "description": "Given a dataset in which each record represents an edge between two nodes of a network, the block will project all the nodes onto a (e.g. 2)- dimensional plane in such a way that nodes which share many connections are close together, and nodes that do not share many connections are far apart.", + "subcategory": "Network Analysis", + "icon": "" }, { - "path": "Preparation/Geo/Shapefile", - "displayName": "Shapefile", - "language": "PYTHON", + "path": "Analytics/Clustering/GMM", + "displayName": "Gaussian Mixture Model", + "language": "R", "optionsVersion": 1, "tags": [ - "shapefile", - "geo", - "geojson", - "shp" + "gmm", + "gaussian", + "mixture", + "model" ], - "category": "Preparation", - "description": "Match regions in shapefile with geographical points having latitude and longitude", - "subcategory": "Geo", - "icon": "" + "category": "Analytics", + "description": "Performs GMM clustering on the first input data provided. The output consists of the original input with a Cluster field appended. If a second input is available, it will be used as output instead.", + "subcategory": "Clustering", + "icon": "" }, { - "path": "Preparation/Geo/Gridsquare", - "displayName": "Gridsquare", + "path": "Analytics/Clustering/DBScan", + "displayName": "DBScan", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "gridsquare", - "maidenhead", - "coordinates", - "locator", - "latitude", - "longitude" + "dbscan", + "clustering" ], - "category": "Preparation", - "description": "Converts gridsquare / Maidenhead ", - "subcategory": "Geo", - "icon": "" + "category": "Analytics", + "description": "Performs DBScan clustering on the first input data provided. The output consists of the original input with a Cluster field appended. If a second input is available, it will be used as output instead.", + "subcategory": "Clustering", + "icon": "" }, { - "path": "Preparation/JSON/Normalise", - "displayName": "JSON Normalise", - "language": "PYTHON", + "path": "Analytics/Clustering/KMeans", + "displayName": "KMeans", + "language": "R", "optionsVersion": 1, "tags": [ - "JSON", - "normalise", - "table", - "semi", - "structured" + "kmeans" ], - "category": "Preparation", - "description": "Normalise semi-structured JSON strings into a flat table, appending data record by record.", - "subcategory": "JSON", - "icon": "" + "category": "Analytics", + "description": "Performs KMeans clustering on the first input data provided. The output consists of the original input with a Cluster field appended. If a second input is available, it will be used as output instead.", + "subcategory": "Clustering", + "icon": "" }, { - "path": "Preparation/Pivot/Melt De-pivot", - "displayName": "Melt De-pivot", + "path": "Analytics/Validation/Model Validation", + "displayName": "Model Validation", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "pivot", - "depivot", - "melt", - "variable", - "fixed" + "model", + "validation", + "confusion", + "matrix", + "precision", + "accuracy", + "fscore" ], - "category": "Preparation", - "description": "Keep all selected fixed fields in the output, de-pivot all other fields", - "subcategory": "Pivot", - "icon": "" + "category": "Analytics", + "description": "Computes a confusion matrix as well as model validation statistics", + "subcategory": "Validation", + "icon": "" }, { - "path": "Preparation/Unstack rows", - "displayName": "Unstack Records", - "language": "PYTHON", - "optionsVersion": 1, - "tags": [], - "category": "Preparation", - "description": "Unstack all records by splitting on text fields with stacked values, filling records with empty strings where needed.", - "subcategory": null, - "icon": "" - }, - { - "path": "Preparation/Field Renamer", - "displayName": "Field Renamer", - "language": "R", - "optionsVersion": 1, - "tags": [ - "field", - "organiser", - "rename", - "name" - ], - "category": "Preparation", - "description": "Renames the fields of a data set given a list of current names and new names.", - "subcategory": null, - "icon": "" - }, - { - "path": "Preparation/Partition", - "displayName": "Partition", - "language": "PYTHON", - "optionsVersion": 1, - "tags": [ - "partition", - "division", - "grouping" - ], - "category": "Preparation", - "description": "Partitions the data into chunks of the desired size. There will be a new field called \"Partition\" which contains a number unique to each partition.", - "subcategory": "Partition", - "icon": "" - }, - { - "path": "Preparation/ForEach/ProjectParameters", - "displayName": "Project Parameters Batch Setting", - "language": "PYTHON", - "optionsVersion": 1, - "tags": [ - "for", - "foreach", - "parameter", - "batch", - "iteration" - ], - "category": "Preparation", - "description": "", - "subcategory": "ForEach", - "icon": "" - }, - { - "path": "Preparation/ForEach/ForEachMultiStage", - "displayName": "ForEach multi stage", - "language": "PYTHON", - "optionsVersion": 1, - "tags": [ - "for", - "foreach", - "iteration", - "paramater", - "stage", - "orchestration" - ], - "category": "Preparation", - "description": "The ForEach multi stage block allows to orchestrate the execution of another Omniscope project and running the workflow multiple times, each time with a different set of parameter values. Unlike the ForEach block allows multiple stages of execution, executing/refreshing from source a different set of blocks in each stage.", - "subcategory": "ForEach", - "icon": "" - }, - { - "path": "Preparation/ForEach/ForEach", - "displayName": "For Each (Separate Workflows)", - "language": "PYTHON", - "optionsVersion": 1, - "tags": [ - "for", - "foreach", - "paramater", - "iteration" - ], - "category": "Preparation", - "description": "Executes another Omniscope project multiple times, each time with a different set of parameter values.", - "subcategory": "Workflow", - "icon": "" - }, - { - "path": "Preparation/Unescape HTML", - "displayName": "Unescape HTML", - "language": "PYTHON", + "path": "Analytics/Prediction/KNN", + "displayName": "K-Nearest-Neighbours", + "language": "R", "optionsVersion": 1, "tags": [ - "HTML", - "escape", - "unescape", - "encode", - "decode" + "knn", + "nearest", + "neighbours", + "prediction" ], - "category": "Preparation", - "description": "Convert all named and numeric character references to the corresponding Unicode characters", - "subcategory": null, - "icon": null + "category": "Analytics", + "description": "Performs k-nearest-neighbour prediction on the data. The prediction for a new point depends on the k-nearest-neighbours around the point. The majority class is used as the prediction.", + "subcategory": "Prediction", + "icon": "" }, { - "path": "Preparation/Add row ID field", - "displayName": "Add row ID field", + "path": "Analytics/Prediction/SVM", + "displayName": "Support Vector Machine", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "row", - "ID", - "sequence" + "svm", + "support", + "vector", + "machine", + "prediction" ], - "category": "Preparation", - "description": "Adds a Row ID field with a sequential number.", - "subcategory": null, - "icon": null + "category": "Analytics", + "description": "Predicts classes of new data from old data by drawing a boundary between two classes whereas the margin around the bondary is made as large as possible to avoid touching the points.", + "subcategory": "Prediction", + "icon": "" }, { - "path": "Preparation/URL Encode", - "displayName": "URL Encode", - "language": "PYTHON", + "path": "Analytics/Survival", + "displayName": "Survival Analysis", + "language": "R", "optionsVersion": 1, - "tags": [ - "URL", - "quote", - "encode" - ], - "category": "Preparation", - "description": "URL encode strings in a field using the UTF-8 encoding scheme", + "tags": [], + "category": "Analytics", + "description": "Computes an estimate of a survival curve for truncated and/or censored data using the Kaplan-Meier or Fleming-Harrington method", "subcategory": null, - "icon": null + "icon": "" }, { - "path": "Preparation/Split Address", - "displayName": "Split Address", + "path": "Analytics/Websites/Website Analysis", + "displayName": "Website Analysis", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "split", - "address", - "street", - "zip", - "country" + "http", + "website", + "scraping", + "analysis" ], - "category": "Preparation", - "description": "Splits an address field into streetname, streetnumber, and suffix.", - "subcategory": null, - "icon": "" + "category": "Analytics", + "description": "Extracts the structure and content of a website and its pages.", + "subcategory": "Website", + "icon": "" }, { "path": "Inputs/Rds Batch Append", @@ -578,6 +479,21 @@ "subcategory": "R", "icon": "" }, + { + "path": "Inputs/Rdata", + "displayName": "R Data Reader", + "language": "R", + "optionsVersion": 1, + "tags": [ + "rdata", + "rda", + "rds" + ], + "category": "Inputs", + "description": "Joins regions defined in a shapefile with points defined as latitudes and longitudes, and gives meta information about the content of the shapefile", + "subcategory": "R", + "icon": "" + }, { "path": "Inputs/Databases/MongoDB", "displayName": "MongoDB", @@ -621,21 +537,6 @@ "subcategory": null, "icon": "" }, - { - "path": "Inputs/Rdata", - "displayName": "R Data Reader", - "language": "R", - "optionsVersion": 1, - "tags": [ - "rdata", - "rda", - "rds" - ], - "category": "Inputs", - "description": "Joins regions defined in a shapefile with points defined as latitudes and longitudes, and gives meta information about the content of the shapefile", - "subcategory": "R", - "icon": "" - }, { "path": "Inputs/Sharepoint Online", "displayName": "Sharepoint Online Downloader", @@ -653,322 +554,422 @@ "icon": "" }, { - "path": "Custom scripts/ExecuteCommand", - "displayName": "Execute Command", + "path": "Outputs/Slack Bot", + "displayName": "Slack Bot", + "language": "PYTHON", + "optionsVersion": 1, + "tags": [ + "slack", + "bot" + ], + "category": "Outputs", + "description": "Posts messages on a channel.", + "subcategory": "Slack", + "icon": "" + }, + { + "path": "Outputs/Report tab to PDF", + "displayName": "Report tab to PDF", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "command", - "execute", - "command line", - "script", "batch", - "terminal" + "output", + "pdf", + "report", + "print", + "tab", + "convert" ], - "category": "Custom scripts", - "description": "Execute a system command.", - "subcategory": null, - "icon": "" + "category": "Outputs", + "description": "Prints Report tabs to PDF files for each record of the input data.", + "subcategory": "PDF", + "icon": "" }, { - "path": "Analytics/Websites/Website Analysis", - "displayName": "Website Analysis", + "path": "Outputs/Report to PowerPoint", + "displayName": "Report to PowerPoint", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "http", - "website", - "scraping", - "analysis" + "screenshot", + "image", + "pptx", + "output", + "print", + "powerpoint", + "export", + "slide" ], - "category": "Analytics", - "description": "Extracts the structure and content of a website and its pages.", - "subcategory": "Website", - "icon": "" + "category": "Outputs", + "description": "Export a Report to a PowerPoint pptx file", + "subcategory": "PowerPoint", + "icon": "" }, { - "path": "Analytics/Network Analysis/Attribute Analysis", - "displayName": "Attribute Analysis", - "language": "R", + "path": "Outputs/GitHub", + "displayName": "GitHub", + "language": "PYTHON", "optionsVersion": 1, "tags": [ - "attribute", - "analysis", - "network", - "graph" + "git", + "repository", + "read", + "write" ], - "category": "Analytics", - "description": "Given a dataset in which each record represents an edge between two nodes of a network, and each node has an associated categorical attribute, the block analyses connections between attributes, based on connections between associated nodes. The result of the analysis is a list of records in which each record specifies a connection from one attribute to another. The connection contains a probability field, which gives an answer to the question that if a node has the specified categorical attribute, how probable it is that it has a connection to another node with the linked categorical attribute.", - "subcategory": "Network Analysis", - "icon": "" + "category": "Outputs", + "description": "Reads from and writes data to GitHub", + "subcategory": "Github", + "icon": "" }, { - "path": "Analytics/Network Analysis/TSNE", - "displayName": "TSNE", - "language": "R", + "path": "Outputs/Web Image-PDF output", + "displayName": "Web Image-PDF output", + "language": "PYTHON", "optionsVersion": 1, "tags": [ - "relationship", - "analysis", - "network", - "graph" + "screenshot", + "image", + "pdf", + "output", + "print" ], - "category": "Analytics", - "description": "Given a dataset in which each record represents an edge between two nodes of a network, the block will project all the nodes onto a (e.g. 2)- dimensional plane in such a way that nodes which share many connections are close together, and nodes that do not share many connections are far apart.", - "subcategory": "Network Analysis", - "icon": "" + "category": "Outputs", + "description": "Grabs screenshots of webpages, optionally producing a PDF document.", + "subcategory": "PDF", + "icon": "" }, { - "path": "Analytics/Clustering/GMM", - "displayName": "Gaussian Mixture Model", - "language": "R", + "path": "Outputs/Google BigQuery Writer", + "displayName": "Google BigQuery Export", + "language": "PYTHON", "optionsVersion": 1, "tags": [ - "gmm", - "gaussian", - "mixture", - "model" + "google", + "big", + "query", + "export" ], - "category": "Analytics", - "description": "Performs GMM clustering on the first input data provided. The output consists of the original input with a Cluster field appended. If a second input is available, it will be used as output instead.", - "subcategory": "Clustering", - "icon": "" + "category": "Outputs", + "description": "Allows to write data to a Google BigQuery table. The table can be created/replaced, or records can be appended to an existing table", + "subcategory": "BigQuery", + "icon": "" }, { - "path": "Analytics/Clustering/DBScan", - "displayName": "DBScan", + "path": "Outputs/Append PDF files", + "displayName": "Append PDF files", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "dbscan", - "clustering" + "pdf", + "append", + "combine" ], - "category": "Analytics", - "description": "Performs DBScan clustering on the first input data provided. The output consists of the original input with a Cluster field appended. If a second input is available, it will be used as output instead.", - "subcategory": "Clustering", - "icon": "" + "category": "Outputs", + "description": "Append multiple PDF files combining them into one PDF file.", + "subcategory": "PDF", + "icon": "" }, { - "path": "Analytics/Clustering/KMeans", - "displayName": "KMeans", - "language": "R", + "path": "Outputs/Report to PDF batch output", + "displayName": "Multi-tenant Report to PDF", + "language": "PYTHON", "optionsVersion": 1, "tags": [ - "kmeans" + "batch", + "output", + "pdf", + "report", + "print", + "tab", + "convert" ], - "category": "Analytics", - "description": "Performs KMeans clustering on the first input data provided. The output consists of the original input with a Cluster field appended. If a second input is available, it will be used as output instead.", - "subcategory": "Clustering", - "icon": "" + "category": "Outputs", + "description": "Prints Report tabs to PDF files for each record of the input data.", + "subcategory": "PDF", + "icon": "" }, { - "path": "Analytics/Prediction/KNN", - "displayName": "K-Nearest-Neighbours", + "path": "Connectors/Overpass/Street Coordinates", + "displayName": "Overpass Street Coordinates", + "language": "PYTHON", + "optionsVersion": 1, + "tags": [ + "overpass", + "street", + "coordinates", + "map" + ], + "category": "Connectors", + "description": "Finds all matching streets given a street name and requests multiple coordinates along the street using data from Overpass API. It will create a row for each point found that is part of a street that matches the given street name. The resulting rows will include the street name, the street Id and the coordinates of the point. The script needs an input with a field with the street name.", + "subcategory": "Overpass", + "icon": "" + }, + { + "path": "Connectors/Jira", + "displayName": "Jira", + "language": "PYTHON", + "optionsVersion": 1, + "tags": [ + "jira", + "issue", + "bug" + ], + "category": "Connectors", + "description": "Retrieves projects and issues from Jira", + "subcategory": null, + "icon": "" + }, + { + "path": "Connectors/Trello", + "displayName": "Trello", + "language": "PYTHON", + "optionsVersion": 1, + "tags": [ + "trello", + "board", + "card" + ], + "category": "Connectors", + "description": "Retrieves boards, lists and cards, and allows you to search in Trello.", + "subcategory": null, + "icon": "" + }, + { + "path": "Connectors/Azure Data Lake Blob", + "displayName": "Azure Data Lake Storage Gen2 Blob", + "language": "PYTHON", + "optionsVersion": 1, + "tags": [ + "azure", + "storage", + "lake", + "datalake", + "blob", + "gen2", + "parquet", + "csv" + ], + "category": "Connectors", + "description": "Storage Gen2 Blob connector to load a CSV or Parquet blob/file in Omniscope.", + "subcategory": "Azure", + "icon": "" + }, + { + "path": "Connectors/XPT Reader", + "displayName": "XPT Reader", + "language": "PYTHON", + "optionsVersion": 1, + "tags": [ + "xpt", + "xport", + "sas" + ], + "category": "Connectors", + "description": "Reads a SAS Transport *xpt* file, extracting a dataset.", + "subcategory": null, + "icon": "" + }, + { + "path": "Connectors/Weather/OpenWeatherMap", + "displayName": "OpenWeatherMap", "language": "R", "optionsVersion": 1, "tags": [ - "knn", - "nearest", - "neighbours", - "prediction" + "weather", + "map", + "longitude", + "latitude", + "forecast" ], - "category": "Analytics", - "description": "Performs k-nearest-neighbour prediction on the data. The prediction for a new point depends on the k-nearest-neighbours around the point. The majority class is used as the prediction.", - "subcategory": "Prediction", - "icon": "" + "category": "Connectors", + "description": "Retrieves current weather and forecasts from OpenWeatherMap", + "subcategory": "Weather", + "icon": "" }, { - "path": "Analytics/Prediction/SVM", - "displayName": "Support Vector Machine", - "language": "PYTHON", + "path": "Connectors/Flightstats/Airlines", + "displayName": "Flightstats Airlines", + "language": "R", "optionsVersion": 1, "tags": [ - "svm", - "support", - "vector", - "machine", - "prediction" + "flightstats", + "airlines" ], - "category": "Analytics", - "description": "Predicts classes of new data from old data by drawing a boundary between two classes whereas the margin around the bondary is made as large as possible to avoid touching the points.", - "subcategory": "Prediction", - "icon": "" + "category": "Connectors", + "description": "Downloads a list of airlines as provided by flightstats (https://www.flightstats.com). The script needs your flightstats app id and key which needs to be obtained either through buying their service or signing up for a test account.", + "subcategory": "Flightstats", + "icon": "" }, { - "path": "Analytics/Survival", - "displayName": "Survival Analysis", + "path": "Connectors/Flightstats/Flights", + "displayName": "Flightstats Flights", "language": "R", "optionsVersion": 1, - "tags": [], - "category": "Analytics", - "description": "Computes an estimate of a survival curve for truncated and/or censored data using the Kaplan-Meier or Fleming-Harrington method", - "subcategory": null, - "icon": "" + "tags": [ + "flightstats", + "flights" + ], + "category": "Connectors", + "description": "Requests information about flights specified in the input data from flightstats (https://www.flightstats.com). If the flight exists the result will contain live information, otherwise it will not be part of it. The script needs your flightstats app id and key which needs to be obtained either through buying their service or signing up for a test account.", + "subcategory": "Flightstats", + "icon": "" }, { - "path": "Analytics/Validation/Model Validation", - "displayName": "Model Validation", - "language": "PYTHON", + "path": "Connectors/Flightstats/Airports", + "displayName": "Flightstats Airports", + "language": "R", "optionsVersion": 1, "tags": [ - "model", - "validation", - "confusion", - "matrix", - "precision", - "accuracy", - "fscore" + "flightstats", + "airports" ], - "category": "Analytics", - "description": "Computes a confusion matrix as well as model validation statistics", - "subcategory": "Validation", - "icon": "" + "category": "Connectors", + "description": "Downloads a list of airports as provided by flightstats (https://www.flightstats.com). The script needs your flightstats app id and key which needs to be obtained either through buying their service or signing up for a test account.", + "subcategory": "Flightstats", + "icon": "" }, { - "path": "Analytics/Data Profiler", - "displayName": "Data Profiler", + "path": "Connectors/Slack API WebClient", + "displayName": "Slack API WebClient", "language": "PYTHON", "optionsVersion": 1, "tags": [], - "category": "Analytics", - "description": "Provides detailed statistics about a dataset", - "subcategory": null, - "icon": "" + "category": "Connectors", + "description": "Allows you to call public Slack endpoints.", + "subcategory": "Slack", + "icon": "" }, { - "path": "Outputs/Slack Bot", - "displayName": "Slack Bot", + "path": "Connectors/Dune", + "displayName": "Dune", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "slack", - "bot" + "dune", + "crypto", + "analytics", + "blockchain" ], - "category": "Outputs", - "description": "Posts messages on a channel.", - "subcategory": "Slack", - "icon": "" + "category": "Connectors", + "description": "Execute queries and retrieve blockchain data from any public query on dune.com, as well as any personal private queries your Dune account has access to", + "subcategory": null, + "icon": "https://dune.com/docs/images/dune-icon-only.png" }, { - "path": "Outputs/Report to PDF batch output", - "displayName": "Multi-tenant Report to PDF", + "path": "Connectors/HubSpot", + "displayName": "HubSpot", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "batch", - "output", - "pdf", - "report", - "print", - "tab", - "convert" + "hubspot", + "crm" ], - "category": "Outputs", - "description": "Prints Report tabs to PDF files for each record of the input data.", - "subcategory": "PDF", - "icon": "" + "category": "Connectors", + "description": "Retrieves contacts, companies, deals and lists", + "subcategory": null, + "icon": "" }, { - "path": "Outputs/Report tab to PDF", - "displayName": "Report tab to PDF", + "path": "Connectors/Etherscan", + "displayName": "Etherscan", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "batch", - "output", - "pdf", - "report", - "print", - "tab", - "convert" + "blockchain", + "ethereum", + "etherscan", + "crypto" ], - "category": "Outputs", - "description": "Prints Report tabs to PDF files for each record of the input data.", - "subcategory": "PDF", - "icon": "" + "category": "Connectors", + "description": "The Ethereum Blockchain Explorer.", + "subcategory": null, + "icon": "" }, { - "path": "Outputs/Report to PowerPoint", - "displayName": "Report to PowerPoint", + "path": "Connectors/YahooFinance", + "displayName": "Yahoo Finance", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "powerpoint", - "pptx", - "export", - "print", - "screenshot", - "png", - "slide" + "stock", + "finance", + "ticker", + "price", + "yahoo" ], - "category": "Outputs", - "description": "Export a Report to a PowerPoint pptx file", - "subcategory": "PowerPoint", - "icon": "" + "category": "Connectors", + "description": "Fetches price data for tickers from Yahoo Finance", + "subcategory": null, + "icon": "" }, { - "path": "Outputs/Google BigQuery Writer", - "displayName": "Google BigQuery Export", + "path": "Connectors/BigQuery/Google BigQuery Import Table", + "displayName": "Google BigQuery Import Table", "language": "PYTHON", "optionsVersion": 1, "tags": [ "google", "big", - "query", - "export" + "import", + "table", + "query" ], - "category": "Outputs", - "description": "Allows to write data to a Google BigQuery table. The table can be created/replaced, or records can be appended to an existing table", - "subcategory": "BigQuery", + "category": "Connectors", + "description": "Allows to import a table from Google BigQuery.", + "subcategory": null, "icon": "" }, { - "path": "Outputs/Append PDF files", - "displayName": "Append PDF files", + "path": "Connectors/BigQuery/Google BigQuery Custom SQL", + "displayName": "Google BigQuery Custom SQL", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "pdf", - "append", - "combine" + "google", + "big", + "query", + "sql", + "custom" ], - "category": "Outputs", - "description": "Append multiple PDF files combining them into one PDF file.", - "subcategory": "PDF", - "icon": "" + "category": "Connectors", + "description": "Executes a SQL query on Google BigQuery and imports the query results", + "subcategory": null, + "icon": "" }, { - "path": "Outputs/GitHub", - "displayName": "GitHub", + "path": "Connectors/Flipside", + "displayName": "Flipside", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "git", - "repository", - "read", - "write" + "flipside", + "crypto", + "analytics", + "blockchain" ], - "category": "Outputs", - "description": "Reads from and writes data to GitHub", - "subcategory": "Github", - "icon": "" + "category": "Connectors", + "description": "Executes a SQL query on Flipside and retrieves the blockchain data", + "subcategory": null, + "icon": "" }, { - "path": "Outputs/Web Image-PDF output", - "displayName": "Web Image-PDF output", + "path": "Custom scripts/ExecuteCommand", + "displayName": "Execute Command", "language": "PYTHON", "optionsVersion": 1, "tags": [ - "screenshot", - "image", - "pdf", - "output", - "print" + "command", + "execute", + "command line", + "script", + "batch", + "terminal" ], - "category": "Outputs", - "description": "Grabs screenshots of webpages, optionally producing a PDF document.", - "subcategory": "PDF", - "icon": "" + "category": "Custom scripts", + "description": "Execute a system command.", + "subcategory": null, + "icon": "" } ] } \ No newline at end of file