forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamOrderedAllocation.cu
243 lines (205 loc) · 8.83 KB
/
streamOrderedAllocation.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample demonstrates stream ordered memory allocation on a GPU using
* cudaMallocAsync and cudaMemPool family of APIs.
*
* basicStreamOrderedAllocation(): demonstrates stream ordered allocation using
* cudaMallocAsync/cudaFreeAsync APIs with default settings.
*
* streamOrderedAllocationPostSync(): demonstrates if there's a synchronization
* in between allocations, then setting the release threshold on the pool will
* make sure the synchronize will not free memory back to the OS.
*/
// System includes
#include <assert.h>
#include <stdio.h>
#include <climits>
// CUDA runtime
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>
#define MAX_ITER 20
/* Add two vectors on the GPU */
__global__ void vectorAddGPU(const float *a, const float *b, float *c, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) {
c[idx] = a[idx] + b[idx];
}
}
int basicStreamOrderedAllocation(const int dev, const int nelem, const float *a,
const float *b, float *c) {
float *d_a, *d_b, *d_c; // Device buffers
float errorNorm, refNorm, ref, diff;
size_t bytes = nelem * sizeof(float);
cudaStream_t stream;
printf("Starting basicStreamOrderedAllocation()\n");
checkCudaErrors(cudaSetDevice(dev));
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
checkCudaErrors(cudaMallocAsync(&d_a, bytes, stream));
checkCudaErrors(cudaMallocAsync(&d_b, bytes, stream));
checkCudaErrors(cudaMallocAsync(&d_c, bytes, stream));
checkCudaErrors(
cudaMemcpyAsync(d_a, a, bytes, cudaMemcpyHostToDevice, stream));
checkCudaErrors(
cudaMemcpyAsync(d_b, b, bytes, cudaMemcpyHostToDevice, stream));
dim3 block(256);
dim3 grid((unsigned int)ceil(nelem / (float)block.x));
vectorAddGPU<<<grid, block, 0, stream>>>(d_a, d_b, d_c, nelem);
checkCudaErrors(cudaFreeAsync(d_a, stream));
checkCudaErrors(cudaFreeAsync(d_b, stream));
checkCudaErrors(
cudaMemcpyAsync(c, d_c, bytes, cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaFreeAsync(d_c, stream));
checkCudaErrors(cudaStreamSynchronize(stream));
/* Compare the results */
printf("> Checking the results from vectorAddGPU() ...\n");
errorNorm = 0.f;
refNorm = 0.f;
for (int n = 0; n < nelem; n++) {
ref = a[n] + b[n];
diff = c[n] - ref;
errorNorm += diff * diff;
refNorm += ref * ref;
}
errorNorm = (float)sqrt((double)errorNorm);
refNorm = (float)sqrt((double)refNorm);
if (errorNorm / refNorm < 1.e-6f)
printf("basicStreamOrderedAllocation PASSED\n");
checkCudaErrors(cudaStreamDestroy(stream));
return errorNorm / refNorm < 1.e-6f ? EXIT_SUCCESS : EXIT_FAILURE;
}
// streamOrderedAllocationPostSync(): demonstrates If the application wants the
// memory to persist in the pool beyond synchronization, then it sets the
// release threshold on the pool. This way, when the application reaches the
// "steady state", it is no longer allocating/freeing memory from the OS.
int streamOrderedAllocationPostSync(const int dev, const int nelem,
const float *a, const float *b, float *c) {
float *d_a, *d_b, *d_c; // Device buffers
float errorNorm, refNorm, ref, diff;
size_t bytes = nelem * sizeof(float);
cudaStream_t stream;
cudaMemPool_t memPool;
cudaEvent_t start, end;
printf("Starting streamOrderedAllocationPostSync()\n");
checkCudaErrors(cudaSetDevice(dev));
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&end));
checkCudaErrors(cudaDeviceGetDefaultMemPool(&memPool, dev));
uint64_t thresholdVal = ULONG_MAX;
// set high release threshold on the default pool so that cudaFreeAsync will
// not actually release memory to the system. By default, the release
// threshold for a memory pool is set to zero. This implies that the CUDA
// driver is allowed to release a memory chunk back to the system as long as
// it does not contain any active suballocations.
checkCudaErrors(cudaMemPoolSetAttribute(
memPool, cudaMemPoolAttrReleaseThreshold, (void *)&thresholdVal));
// Record the start event
checkCudaErrors(cudaEventRecord(start, stream));
for (int i = 0; i < MAX_ITER; i++) {
checkCudaErrors(cudaMallocAsync(&d_a, bytes, stream));
checkCudaErrors(cudaMallocAsync(&d_b, bytes, stream));
checkCudaErrors(cudaMallocAsync(&d_c, bytes, stream));
checkCudaErrors(
cudaMemcpyAsync(d_a, a, bytes, cudaMemcpyHostToDevice, stream));
checkCudaErrors(
cudaMemcpyAsync(d_b, b, bytes, cudaMemcpyHostToDevice, stream));
dim3 block(256);
dim3 grid((unsigned int)ceil(nelem / (float)block.x));
vectorAddGPU<<<grid, block, 0, stream>>>(d_a, d_b, d_c, nelem);
checkCudaErrors(cudaFreeAsync(d_a, stream));
checkCudaErrors(cudaFreeAsync(d_b, stream));
checkCudaErrors(
cudaMemcpyAsync(c, d_c, bytes, cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaFreeAsync(d_c, stream));
checkCudaErrors(cudaStreamSynchronize(stream));
}
checkCudaErrors(cudaEventRecord(end, stream));
// Wait for the end event to complete
checkCudaErrors(cudaEventSynchronize(end));
float msecTotal = 0.0f;
checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, end));
printf("Total elapsed time = %f ms over %d iterations\n", msecTotal,
MAX_ITER);
/* Compare the results */
printf("> Checking the results from vectorAddGPU() ...\n");
errorNorm = 0.f;
refNorm = 0.f;
for (int n = 0; n < nelem; n++) {
ref = a[n] + b[n];
diff = c[n] - ref;
errorNorm += diff * diff;
refNorm += ref * ref;
}
errorNorm = (float)sqrt((double)errorNorm);
refNorm = (float)sqrt((double)refNorm);
if (errorNorm / refNorm < 1.e-6f)
printf("streamOrderedAllocationPostSync PASSED\n");
checkCudaErrors(cudaStreamDestroy(stream));
return errorNorm / refNorm < 1.e-6f ? EXIT_SUCCESS : EXIT_FAILURE;
}
int main(int argc, char **argv) {
int nelem;
int dev = 0; // use default device 0
size_t bytes;
float *a, *b, *c; // Host
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
printf("Usage: streamOrderedAllocation [OPTION]\n\n");
printf("Options:\n");
printf(" --device=[device #] Specify the device to be used\n");
return EXIT_SUCCESS;
}
dev = findCudaDevice(argc, (const char **)argv);
int isMemPoolSupported = 0;
checkCudaErrors(cudaDeviceGetAttribute(&isMemPoolSupported,
cudaDevAttrMemoryPoolsSupported, dev));
if (!isMemPoolSupported) {
printf("Waiving execution as device does not support Memory Pools\n");
exit(EXIT_WAIVED);
}
// Allocate CPU memory.
nelem = 1048576;
bytes = nelem * sizeof(float);
a = (float *)malloc(bytes);
b = (float *)malloc(bytes);
c = (float *)malloc(bytes);
/* Initialize the vectors. */
for (int n = 0; n < nelem; n++) {
a[n] = rand() / (float)RAND_MAX;
b[n] = rand() / (float)RAND_MAX;
}
int ret1 = basicStreamOrderedAllocation(dev, nelem, a, b, c);
int ret2 = streamOrderedAllocationPostSync(dev, nelem, a, b, c);
/* Memory clean up */
free(a);
free(b);
free(c);
return ((ret1 == EXIT_SUCCESS && ret2 == EXIT_SUCCESS) ? EXIT_SUCCESS
: EXIT_FAILURE);
}