-
Notifications
You must be signed in to change notification settings - Fork 0
/
camb_python.f90
602 lines (487 loc) · 19.3 KB
/
camb_python.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
module handles
use CAMB
use Precision
use ModelParams
use Transfer
use iso_c_binding
implicit none
Type c_MatterTransferData
integer :: num_q_trans ! number of steps in k for transfer calculation
type(c_ptr) :: q_trans, sigma_8, sigma2_vdelta_8, TransferData
integer :: sigma_8_size(2)
integer :: sigma2_vdelta_8_size(2)
integer :: TransferData_size(3)
end Type c_MatterTransferData
Type c_ClTransferData
integer :: NumSources
integer :: q_size
type(c_ptr) :: q
integer delta_size(3)
type(c_ptr) Delta_p_l_k
integer l_size
type(c_ptr) ls
!skip limber for now...
end Type c_ClTransferData
contains
!SPECIAL BRIDGE ROUTINES FOR PYTHON
subroutine CAMBdata_new(handle)
type(c_ptr), intent(out) :: handle
Type (CAMBdata), pointer :: pCAMBdata
allocate(pCAMBdata)
call CAMB_InitCAMBdata(pCAMBdata)
call CAMB_setDefParams(pCAMBdata%Params)
handle = c_loc(pCAMBdata)
end subroutine CAMBdata_new
subroutine CAMBdata_free(cptr)
type(c_ptr) :: cptr
Type (CAMBdata), pointer :: pCAMBdata
call c_f_pointer(cptr, pCAMBdata)
call CAMB_FreeCAMBdata(pCAMBdata)
deallocate(pCAMBdata)
end subroutine CAMBdata_free
subroutine CAMBdata_setParams(data, Params)
Type (CAMBdata), target :: data
type(CAMBparams) :: Params
data%Params = Params
end subroutine CAMBdata_setParams
subroutine CAMBdata_getParams(data, handle)
Type (CAMBdata), target :: data
type(c_ptr), intent(out) :: handle
handle = c_loc(data%Params)
end subroutine CAMBdata_getParams
function CAMBdata_GetTransfers(data, Params, onlytransfer) result(error)
Type (CAMBdata):: data
type(CAMBparams) :: Params, P
logical(kind=c_bool) :: onlytransfer
integer :: error
P = Params
if (P%DoLensing .and. (P%NonLinear == NonLinear_lens .or. P%NonLinear == NonLinear_both)) then
P%WantTransfer = .true.
call Transfer_SetForNonlinearLensing(P%Transfer)
end if
call Transfer_SortAndIndexRedshifts(P%Transfer)
error = 0
P%OnlyTransfers = onlytransfer
call CAMB_GetTransfers(P, data, error)
end function CAMBdata_GetTransfers
subroutine CAMBdata_SetParamsForBackground(data, P)
Type (CAMBdata):: data
type(CAMBparams) :: P
global_error_flag = 0
data%Params = P
call CAMBParams_Set(data%Params)
end subroutine CAMBdata_SetParamsForBackground
function CAMBdata_CalcBackgroundTheory(data, P) result(error)
use cambmain, only: initvars
Type (CAMBdata):: data
type(CAMBparams) :: P
integer error
global_error_flag = 0
data%Params = P
call CAMBParams_Set(data%Params)
if (global_error_flag==0) call InitVars !calculate thermal history, e.g. z_drag etc.
error=global_error_flag
end function CAMBdata_CalcBackgroundTheory
subroutine CAMBdata_MatterTransferData(data, cData)
Type(CAMBdata), target :: data
Type(c_MatterTransferData) :: cData
cData%num_q_trans = data%MTrans%num_q_trans
cData%q_trans = c_loc(data%MTrans%q_trans)
cData%sigma_8 = c_loc(data%MTrans%sigma_8)
cData%sigma2_vdelta_8 = c_loc(data%MTrans%sigma2_vdelta_8)
cData%TransferData = c_loc(data%MTrans%TransferData)
cData%q_trans = c_loc(data%MTrans%q_trans)
cData%sigma_8_size = shape(data%MTrans%sigma_8)
cData%sigma2_vdelta_8_size = shape(data%MTrans%sigma2_vdelta_8)
cData%TransferData_size = shape(data%MTrans%TransferData)
end subroutine CAMBdata_MatterTransferData
subroutine CAMBdata_ClTransferData(data, cData, i)
Type(CAMBdata), target :: data
Type(c_ClTransferData) :: cData
integer, intent(in) :: i
if (i==0) then
call Convert_ClTransferData(data%ClTransScal, cData)
else if (i==1) then
call Convert_ClTransferData(data%ClTransVec, cData)
else if (i==2) then
call Convert_ClTransferData(data%ClTransTens, cData)
else
error stop 'Unknown ClTransferData index'
end if
end subroutine CAMBdata_ClTransferData
subroutine Convert_ClTransferData(data, cData)
Type(ClTransferData), target :: data
Type(c_ClTransferData) :: cData
cData%NumSources = data%NumSources
if (associated(Data%q%points)) then
cData%q_size = size(data%q%points)
cData%q = c_loc(data%q%points)
else
cData%q_size = 0
end if
if (associated(data%Delta_p_l_k)) then
cData%delta_size = shape(Data%Delta_p_l_k)
cData%delta_p_l_k = c_loc(Data%Delta_p_l_k)
else
cData%delta_size = 0
end if
cdata%l_size = Data%ls%l0
cdata%ls = c_loc(Data%ls%l)
end subroutine Convert_ClTransferData
subroutine CAMBdata_GetLinearMatterPower(data, PK, var1, var2, hubble_units)
Type(CAMBdata) :: data
real(dl) :: PK(data%MTrans%num_q_trans,data%Params%Transfer%PK_num_redshifts)
integer, intent(in) :: var1, var2
logical :: hubble_units
call Transfer_GetUnsplinedPower(data%MTrans, PK, var1, var2, hubble_units)
end subroutine CAMBdata_GetLinearMatterPower
subroutine CAMBdata_GetNonLinearMatterPower(data, PK, var1, var2, hubble_units)
Type(CAMBdata) :: data
real(dl) :: PK(data%MTrans%num_q_trans,data%Params%Transfer%PK_num_redshifts)
integer, intent(in) :: var1, var2
logical :: hubble_units
call Transfer_GetUnsplinedNonlinearPower(data%MTrans, PK, var1, var2, hubble_units)
end subroutine CAMBdata_GetNonLinearMatterPower
subroutine CAMBdata_GetMatterPower(data, outpower, minkh, dlnkh, npoints, var1, var2)
Type(CAMBdata) :: data
real(dl), intent(out) :: outpower(npoints,data%Params%Transfer%PK_num_redshifts)
real(dl), intent(in) :: minkh, dlnkh
integer, intent(in) :: npoints, var1, var2
integer i
do i=1,data%Params%Transfer%PK_num_redshifts
call Transfer_GetMatterPowerD(data%MTrans,outpower(:,i), data%Params%Transfer%PK_num_redshifts-i+1, &
& 1, minkh, dlnkh, npoints, var1, var2)
end do
end subroutine CAMBdata_GetMatterPower
subroutine CAMB_setinitialpower(Params, P)
type(CAMBparams) :: Params
type(InitialPowerParams) :: P
Params%InitPower = P
end subroutine CAMB_setinitialpower
subroutine CAMB_SetTotCls(lmax, tot_scalar_Cls, in)
integer, intent(IN) :: lmax, in
real(dl), intent(OUT) :: tot_scalar_cls(4, 0:lmax)
integer l
tot_scalar_cls = 0
do l=lmin, lmax
if (CP%WantScalars .and. l<= CP%Max_l) then
if (CP%DoLensing) then
if (l<=lmax_lensed) tot_scalar_cls(1:4,l) = Cl_lensed(l, in, CT_Temp:CT_Cross)
else
tot_scalar_cls(1:2,l) = Cl_scalar(l, in, C_Temp:C_E)
tot_scalar_cls(4,l) = Cl_scalar(l, in, C_Cross)
endif
end if
if (CP%WantTensors .and. l <= CP%Max_l_tensor) then
tot_scalar_cls(1:4,l) = tot_scalar_cls(1:4,l) + Cl_tensor(l, in, CT_Temp:CT_Cross)
end if
end do
end subroutine CAMB_SetTotCls
subroutine CAMB_SetUnlensedCls(lmax, unlensed_cls, in)
integer, intent(IN) :: lmax, in
real(dl), intent(OUT) :: unlensed_cls(4,0:lmax)
integer l
unlensed_cls = 0
do l=lmin, lmax
if (CP%WantScalars .and. l<= CP%Max_l) then
unlensed_cls(1:2,l) = Cl_scalar(l, in, C_Temp:C_E)
unlensed_cls(4,l) = Cl_scalar(l, in, C_Cross)
end if
if (CP%WantTensors .and. l <= CP%Max_l_tensor) then
unlensed_cls(1:4,l) = unlensed_cls(1:4,l) + Cl_tensor(l, in, CT_Temp:CT_Cross)
end if
end do
end subroutine CAMB_SetUnlensedCls
subroutine CAMB_SetLensPotentialCls(lmax, cls, in)
use constants
integer, intent(IN) :: lmax, in
real(dl), intent(OUT) :: cls(3, 0:lmax) !phi-phi, phi-T, phi-E
integer l
cls = 0
if (CP%WantScalars .and. CP%DoLensing) then
do l=lmin, min(lmax,CP%Max_l)
cls(1,l) = Cl_scalar(l,in,C_Phi) * (real(l+1)/l)**2/const_twopi
cls(2:3,l) = Cl_scalar(l,in,C_PhiTemp:C_PhiE) * ((real(l+1)/l)**1.5/const_twopi)
end do
end if
end subroutine CAMB_SetLensPotentialCls
subroutine CAMB_SetUnlensedScalCls(lmax, scalar_Cls, in)
integer, intent(IN) :: lmax, in
real(dl), intent(OUT) :: scalar_Cls(4, 0:lmax)
integer lmx
scalar_Cls = 0
if (CP%WantScalars) then
lmx = min(CP%Max_l, lmax)
scalar_Cls(1:2,lmin:lmx) = transpose(Cl_Scalar(lmin:lmx, in,C_Temp:C_E))
scalar_Cls(4,lmin:lmx) = Cl_Scalar(lmin:lmx, in,C_Cross)
end if
end subroutine CAMB_SetUnlensedScalCls
subroutine CAMB_SetlensedScalCls(lmax, lensed_Cls, in)
integer, intent(IN) :: lmax, in
real(dl), intent(OUT) :: lensed_Cls(4, 0:lmax)
integer lmx
lensed_Cls = 0
if (CP%WantScalars .and. CP%DoLensing) then
lmx = min(lmax,lmax_lensed)
lensed_Cls(1:4,lmin:lmx) = transpose(Cl_lensed(lmin:lmx, in,CT_Temp:CT_Cross))
end if
end subroutine CAMB_SetlensedScalCls
subroutine CAMB_SetTensorCls(lmax, tensor_Cls, in)
integer, intent(IN) :: lmax, in
real(dl), intent(OUT) :: tensor_Cls(4, 0:lmax)
integer lmx
tensor_Cls = 0
if (CP%WantTensors) then
lmx = min(lmax,CP%Max_l_tensor)
!tensor_Cls(1:3,lmin:lmx) = transpose(Cl_Tensor(lmin:lmx, in, CT_Temp:CT_Cross))
end if
end subroutine CAMB_SetTensorCls
subroutine CAMB_SetUnlensedScalarArray(lmax, ScalarArray, in, n)
integer, intent(IN) :: lmax, in, n
real(dl), intent(OUT) :: ScalarArray(n, n, 0:lmax)
integer l
ScalarArray = 0
if (CP%WantScalars) then
do l=lmin, min(lmax,CP%Max_l)
ScalarArray(1:n,1:n,l) = Cl_scalar_array(l, in, 1:n,1:n)
end do
end if
end subroutine CAMB_SetUnlensedScalarArray
subroutine CAMB_SetBackgroundOutputs_z(redshifts,n)
integer, intent(in) :: n
real(dl), intent(in) :: redshifts(n)
if (associated(BackgroundOutputs%z_outputs)) deallocate(BackgroundOutputs%z_outputs)
if (n>0) then
allocate(BackgroundOutputs%z_outputs(n))
BackgroundOutputs%z_outputs = redshifts
else
nullify(BackgroundOutputs%z_outputs)
end if
end subroutine CAMB_SetBackgroundOutputs_z
function CAMB_GetNumBackgroundOutputs()
integer CAMB_GetNumBackgroundOutputs
if (.not. associated(BackgroundOutputs%z_outputs)) then
CAMB_GetNumBackgroundOutputs = 0
else
CAMB_GetNumBackgroundOutputs = size(BackgroundOutputs%z_outputs)
end if
end function CAMB_GetNumBackgroundOutputs
subroutine CAMB_GetBackgroundOutputs(outputs, n)
use constants
integer, intent(in) :: n
real(dl), intent(out) :: outputs(4,n)
integer i
if (associated(BackgroundOutputs%z_outputs)) then
do i=1, size(BackgroundOutputs%z_outputs)
outputs(1,i) = BackgroundOutputs%rs_by_D_v(i)
outputs(2,i) = BackgroundOutputs%H(i)*c/1e3_dl
outputs(3,i) = BackgroundOutputs%DA(i)
outputs(4,i) = (1+BackgroundOutputs%z_outputs(i))* &
BackgroundOutputs%DA(i) * BackgroundOutputs%H(i) !F_AP parameter
end do
end if
end subroutine CAMB_GetBackgroundOutputs
subroutine set_cls_template(cls_template)
character(len=*), intent(in) :: cls_template
highL_unlensed_cl_template = trim(cls_template)
end subroutine set_cls_template
function CAMB_PrimordialPower(Params, k, powers, n, i) result(err)
use constants
type(CAMBparams) :: Params
integer, intent(in) :: i,n
real(dl), intent(in) :: k(n)
real(dl), intent(out) :: powers(n)
real(dl) curv
integer err,ix
global_error_flag = 0
curv =-Params%omegak/((c/1000)/Params%h0)**2
call InitializePowers(Params%InitPower,curv)
if (global_error_flag==0) then
do ix =1, n
if (i==0) then
powers(ix) = ScalarPower(k(ix),1)
elseif (i==2) then
powers(ix) = TensorPower(k(ix),1)
else
error stop 'Unknown power type index'
end if
if (global_error_flag /= 0) exit
end do
end if
err= global_error_flag
end function CAMB_PrimordialPower
subroutine GetOutputEvolutionFork(EV, times, outputs, nsources,ncustomsources)
use Transfer
use CAMBmain
implicit none
type(EvolutionVars) EV
real(dl), intent(in) :: times(:)
real(dl), intent(out) :: outputs(:,:,:)
integer, intent(in) :: nsources, ncustomsources
real(dl) tau,tol1,tauend, taustart
integer j,ind
real(dl) c(24),w(EV%nvar,9), y(EV%nvar)
real(dl) yprime(EV%nvar), ddelta, delta, adotoa,dtauda, growth, a
real(dl), target :: sources(nsources), custom_sources(ncustomsources)
external dtauda
real, target :: Arr(Transfer_max)
w=0
y=0
taustart = GetTauStart(min(500._dl,EV%q))
call initial(EV,y, taustart)
tau=taustart
ind=1
tol1=tol/exp(AccuracyBoost-1)
do j=1,size(times)
tauend = times(j)
if (tauend<taustart) cycle
call GaugeInterface_EvolveScal(EV,tau,y,tauend,tol1,ind,c,w)
yprime = 0
EV%OutputTransfer => Arr
EV%OutputSources => sources
if (ncustomsources>0) EV%CustomSources => custom_sources
call derivs(EV,EV%ScalEqsToPropagate,tau,y,yprime)
nullify(EV%OutputTransfer, EV%OutputSources, EV%CustomSources)
a = y(1)
outputs(1:Transfer_Max, j, EV%q_ix) = Arr
outputs(Transfer_Max+1, j, EV%q_ix) = a
outputs(Transfer_Max+2, j, EV%q_ix) = y(2) !etak
adotoa = 1/(y(1)*dtauda(y(1)))
ddelta= (yprime(3)*grhoc+yprime(4)*grhob)/(grhob+grhoc)
delta=(grhoc*y(3)+grhob*y(4))/(grhob+grhoc)
growth= ddelta/delta/adotoa
outputs(Transfer_Max+3, j, EV%q_ix) = adotoa !hubble
outputs(Transfer_Max+4, j, EV%q_ix) = growth
if (.not. EV%no_phot_multpoles) then
outputs(Transfer_Max+5, j, EV%q_ix) = y(EV%g_ix+1) !v_g
if (EV%TightCoupling) then
outputs(Transfer_Max+6, j, EV%q_ix) = EV%pig
outputs(Transfer_Max+7, j, EV%q_ix) = EV%pig/4 !just first order result
else
outputs(Transfer_Max+6, j, EV%q_ix) = y(EV%g_ix+2) !pi_g
outputs(Transfer_Max+7, j, EV%q_ix) = y(EV%polind+2) !E_2
end if
end if
if (.not. EV%no_nu_multpoles) then
outputs(Transfer_Max+8, j, EV%q_ix) = y(EV%r_ix+1) !v_r
end if
outputs(Transfer_max + 9:Transfer_max + 9 + nsources-1, j, EV%q_ix) = sources
if (ncustomsources > 0) then
outputs(Transfer_max + 9+nsources: &
Transfer_max + 9 + nsources + ncustomsources-1, j, EV%q_ix) = custom_sources
end if
if (global_error_flag/=0) return
end do
end subroutine GetOutputEvolutionFork
function CAMB_TimeEvolution(nq, q, ntimes, times, noutputs, outputs, &
ncustomsources,c_source_func) result(err)
use GaugeInterface
integer, intent(in) :: nq, ntimes, noutputs, ncustomsources
real(dl), intent(in) :: q(nq), times(ntimes)
real(dl), intent(out) :: outputs(noutputs, ntimes, nq)
TYPE(C_FUNPTR), INTENT(IN) :: c_source_func
integer err
integer q_ix, i
Type(EvolutionVars) :: Ev
procedure(TSource_func), pointer :: old_sources
if (ncustomsources > 0) then
! Convert C to Fortran procedure pointer.
old_sources => custom_sources_func
CALL C_F_PROCPOINTER (c_source_func, custom_sources_func)
end if
global_error_flag = 0
outputs = 0
!$OMP PARALLEL DO DEFAUlT(SHARED),SCHEDUlE(DYNAMIC), PRIVATE(EV, q_ix)
do q_ix= 1, nq
if (global_error_flag==0) then
EV%q_ix = q_ix
EV%q = q(q_ix)
EV%TransferOnly=.false.
EV%q2=EV%q**2
call GetNumEqns(EV)
call GetOutputEvolutionFork(EV, times, outputs, 3, ncustomsources)
end if
end do
!$OMP END PARALLEL DO
if (ncustomsources>0) custom_sources_func => old_sources
err = global_error_flag
end function CAMB_TimeEvolution
subroutine CAMB_SetCustomSourcesFunc(ncustomsources, c_source_func, ell_scales)
use GaugeInterface
integer, intent(in) :: ncustomsources
integer, intent(in) :: ell_scales(ncustomsources)
TYPE(C_FUNPTR), INTENT(IN) :: c_source_func
num_custom_sources = ncustomsources
if (allocated(custom_source_ell_scales)) deallocate(custom_source_ell_scales)
if (ncustomsources > 0) then
! Convert C to Fortran procedure pointer.
CALL C_F_PROCPOINTER (c_source_func, custom_sources_func)
allocate(custom_source_ell_scales(num_custom_sources))
custom_source_ell_scales=ell_scales
else
nullify(custom_sources_func)
end if
end subroutine CAMB_SetCustomSourcesFunc
function Utils_GetChiSquared(c_inv, Y, n) result(chi2)
!get dot_product(matmul(C_inv,Y), Y) efficiently assuming c_inv symmetric
integer, intent(in) :: n
real(dl), intent(in) :: Y(n)
real(dl), intent(in) :: c_inv(n,n)
integer j
real(dl) ztemp, chi2
chi2 = 0
!$OMP parallel do private(j,ztemp) reduction(+:chi2) schedule(static,16)
do j = 1, n
ztemp= dot_product(Y(j+1:n), c_inv(j+1:n, j))
chi2=chi2+ (ztemp*2 +c_inv(j, j)*Y(j))*Y(j)
end do
end function Utils_GetChiSquared
subroutine Utils_3j_integrate(W,lmax_w, n, dopol, M, lmax)
!Get coupling matrix, eg for pesudo-CL
integer, intent(in) :: lmax, lmax_w, n
real(dl), intent(in) :: W(0:lmax_w,n)
logical, intent(in) :: dopol
real(dl), intent(out) :: M(0:lmax,0:lmax, n)
integer l1, l2, lplus, lminus, thread_ix, ix
real(dl), allocatable :: threejj0(:,:), threejj2(:,:)
!$ integer OMP_GET_THREAD_NUM, OMP_GET_MAX_THREADS
!$ external OMP_GET_THREAD_NUM, OMP_GET_MAX_THREADS
thread_ix = 1
!$ thread_ix = OMP_GET_MAX_THREADS()
allocate(threejj0(0:2*lmax,thread_ix))
if (dopol) then
allocate(threejj2(0:2*lmax,thread_ix))
end if
!$OMP parallel do private(l1,l2,lminus,lplus,thread_ix,ix), schedule(dynamic)
do l1 = 0, lmax
thread_ix =1
!$ thread_ix = OMP_GET_THREAD_NUM()+1
do l2 = 0, l1
lplus = min(lmax_w,l1+l2)
lminus = abs(l1-l2)
call GetThreeJs(threejj0(lminus:,thread_ix),l1,l2,0,0)
if (dopol) then
!note that lminus is correct, want max(abs(l1-l2),abs(m1)) where m1=0 here
call GetThreeJs(threejj2(lminus:,thread_ix),l1,l2,-2,2)
M(l2,l1,2) = sum(W(lminus:lplus:2,2)*threejj0(lminus:lplus:2,thread_ix) &
*threejj2(lminus:lplus:2,thread_ix)) !TE
M(l2,l1,3) = sum(W(lminus:lplus:2,3)*threejj2(lminus:lplus:2,thread_ix)**2) !EE
M(l2,l1,4) = sum(W(lminus+1:lplus:2,3)*threejj2(lminus+1:lplus:2,thread_ix)**2) !EB
end if
if (n>1) then
threejj0(lminus:lplus,thread_ix) = threejj0(lminus:lplus,thread_ix)**2
do ix=1,n
M(l2,l1,ix) = sum(W(lminus:lplus,ix)* threejj0(lminus:lplus,thread_ix))
end do
else
M(l2,l1,1) = sum(W(lminus:lplus,1)* threejj0(lminus:lplus,thread_ix)**2)
end if
end do
end do
do l1=0, lmax
do l2 = l1+1,lmax
M(l2,l1,:) = M(l1,l2,:)
end do
end do
end subroutine Utils_3j_integrate
end module handles