From 2fcb0bf6280a7144b87e2c0194478a675e1c9906 Mon Sep 17 00:00:00 2001 From: David Espejo <82604841+davidmirror-ops@users.noreply.github.com> Date: Thu, 25 Jul 2024 15:29:25 -0500 Subject: [PATCH] Update GPU docs (#5515) * Introduce 3 levels Signed-off-by: davidmirror-ops * Fix ImageSpec config Signed-off-by: davidmirror-ops * Rephrase 1st section and prereqs Signed-off-by: davidmirror-ops * Expand 2nd section up to nodeSelector key Signed-off-by: davidmirror-ops * Add partition scheduling info Signed-off-by: davidmirror-ops * Reorganize instructions Signed-off-by: davidmirror-ops * Improve clarity Signed-off-by: davidmirror-ops * Apply reviews pt1 Signed-off-by: davidmirror-ops * Add note on default scheduling behavior Signed-off-by: davidmirror-ops * Add missing YAML and rephrase full A100 behavior Signed-off-by: davidmirror-ops --------- Signed-off-by: davidmirror-ops Signed-off-by: Vladyslav Libov --- .../configuring_access_to_gpus.md | 409 +++++++++++++++++- 1 file changed, 390 insertions(+), 19 deletions(-) diff --git a/docs/user_guide/productionizing/configuring_access_to_gpus.md b/docs/user_guide/productionizing/configuring_access_to_gpus.md index 60e4a35ced..7ae6213a5f 100644 --- a/docs/user_guide/productionizing/configuring_access_to_gpus.md +++ b/docs/user_guide/productionizing/configuring_access_to_gpus.md @@ -6,31 +6,402 @@ .. tags:: Deployment, Infrastructure, GPU, Intermediate ``` -Along with the simpler resources like CPU/Memory, you may want to configure and access GPU resources. Flyte -allows you to configure the GPU access poilcy for your cluster. GPUs are expensive and it would not be ideal to -treat machines with GPUs and machines with CPUs equally. You may want to reserve machines with GPUs for tasks -that explicitly request GPUs. To achieve this, Flyte uses the Kubernetes concept of [taints and tolerations](https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/). +Along with compute resources like CPU and memory, you may want to configure and access GPU resources. -Kubernetes can automatically apply tolerations for extended resources like GPUs using the [ExtendedResourceToleration plugin](https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#extendedresourcetoleration), enabled by default in some cloud environments. Make sure the GPU nodes are tainted with a key matching the resource name, i.e., `key: nvidia.com/gpu`. +Flyte provides different ways to request accelerator resources directly from the task decorator. -You can also configure Flyte backend to apply specific tolerations. This configuration is controlled under generic k8s plugin configuration as can be found [here](https://github.com/flyteorg/flyteplugins/blob/5a00b19d88b93f9636410a41f81a73356a711482/go/tasks/pluginmachinery/flytek8s/config/config.go#L120). +>The examples in this section use [ImageSpec](https://docs.flyte.org/en/latest/user_guide/customizing_dependencies/imagespec.html#imagespec), a Flyte feature that builds a custom container image without a Dockerfile. Install it using `pip install flytekitplugins-envd`. -The idea of this configuration is that whenever a task that can execute on Kubernetes requests for GPUs, it automatically -adds the matching toleration for that resource (in this case, `gpu`) to the generated PodSpec. -As it follows here, you can configure it to access specific resources using the tolerations for all resources supported by -Kubernetes. +## Requesting a GPU with no preference for device +The goal in this example is to run the task on a single available GPU : -Here's an example configuration: +```python +from flytekit import ImageSpec, Resources, task +image = ImageSpec( + base_image= "ghcr.io/flyteorg/flytekit:py3.10-1.10.2", + name="pytorch", + python_version="3.10", + packages=["torch"], + builder="default", + registry="", + ) + +@task(requests=Resources( gpu="1")) +def gpu_available() -> bool: + return torch.cuda.is_available() # returns True if CUDA (provided by a GPU) is available +``` +### How it works? + +![](https://raw.githubusercontent.com/flyteorg/static-resources/main/flyte/deployment/gpus/generic_gpu_access.png) + +When this task is evaluated, `flyteproller` injects a [toleration](https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/) in the pod spec: + +```yaml +tolerations: nvidia.com/gpu:NoSchedule op=Exists +``` +The Kubernetes scheduler will admit the pod if there are worker nodes in the cluster with a matching taint and available resources. + +The resource `nvidia.com/gpu` key name is not arbitrary though. It corresponds to the [Extended Resource](https://kubernetes.io/docs/tasks/administer-cluster/extended-resource-node/) that the Kubernetes worker nodes advertise to the API server through the [device plugin](https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/#using-device-plugins). Using the information provided by the device plugin, the Kubernetes scheduler allocates an available accelerator to the Pod. + +>NVIDIA maintains a [GPU operator](https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/index.html) that automates the management of all software prerequisites on Kubernetes, including the device plugin. + +``flytekit`` assumes by default that `nvidia.com/gpu` is the resource name for your GPUs. If your GPU accelerators expose a different resource name, adjust the following key in the Helm values file: + +**flyte-core** +```yaml +configmap: + k8s: + plugins: + k8s: + gpu-resource-name: +``` + +**flyte-binary** +```yaml +configuration: + inline: + plugins: + k8s: + gpu-resource-name: +``` + +If your infrastructure requires additional tolerations for the scheduling of GPU resources to succeed, adjust the following section in the Helm values file: + +**flyte-core** +```yaml +configmap: + k8s: + plugins: + k8s: + resource-tolerations: + - nvidia.com/gpu: + - key: "mykey" + operator: "Equal" + value: "myvalue" + effect: "NoSchedule" +``` +**flyte-binary** +```yaml +configuration: + inline: + plugins: + k8s: + resource-tolerations: + - nvidia.com/gpu: + - key: "mykey" + operator: "Equal" + value: "myvalue" + effect: "NoSchedule" +``` +>For the above configuration, your worker nodes should have a `mykey=myvalue:NoSchedule` configured [taint](https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/). + +## Requesting a specific GPU device + +The goal is to run the task on a specific type of accelerator: NVIDIA Tesla V100 in the following example: + + +```python +from flytekit import ImageSpec, Resources, task +from flytekit.extras.accelerators import V100 + +image = ImageSpec( + base_image= "ghcr.io/flyteorg/flytekit:py3.10-1.10.2", + name="pytorch", + python_version="3.10", + packages=["torch"], + builder="default", + registry="", + ) + +@task(requests=Resources( gpu="1"), + accelerator=V100, + ) #NVIDIA Tesla V100 +def gpu_available() -> bool: + return torch.cuda.is_available() +``` + + +### How it works? + +When this task is evaluated, `flytepropeller` injects both a toleration and a [nodeSelector](https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector) for a more flexible scheduling configuration. + +An example pod spec on GKE would include the following: + +```yaml +apiVersion: v1 +kind: Pod +spec: + affinity: + nodeAffinity: + requiredDuringSchedulingIgnoredDuringExecution: + nodeSelectorTerms: + - matchExpressions: + - key: cloud.google.com/gke-accelerator + operator: In + values: + - nvidia-tesla-v100 + containers: + - resources: + limits: + nvidia.com/gpu: 1 + tolerations: + - key: nvidia.com/gpu # auto + operator: Equal + value: present + effect: NoSchedule + - key: cloud.google.com/gke-accelerator + operator: Equal + value: nvidia-tesla-v100 + effect: NoSchedule +``` +### Configuring the nodeSelector +The `key` that the injected node selector uses corresponds to an arbitrary label that your Kubernetes worker nodes should already have. In the above example it's `cloud.google.com/gke-accelerator` but, depending on your cloud provider it could be any other value. You can inform Flyte about the labels your worker nodes use by adjusting the Helm values: + +**flyte-core** ```yaml -plugins: +configmap: k8s: - resource-tolerations: - - nvidia.com/gpu: - - key: "key1" - operator: "Equal" - value: "value1" - effect: "NoSchedule" + plugins: + k8s: + gpu-device-node-label: "cloud.google.com/gke-accelerator" #change to match your node's config ``` +**flyte-binary** +```yaml +configuration: + inline: + plugins: + k8s: + gpu-device-node-label: "cloud.google.com/gke-accelerator" #change to match your node's config +``` +While the `key` is arbitrary, the value (`nvidia-tesla-v100`) is not. `flytekit` has a set of [predefined](https://docs.flyte.org/en/latest/api/flytekit/extras.accelerators.html#predefined-accelerator-constants) constants and your node label has to use one of those values. + +## Requesting a GPU partition + +`flytekit` supports [Multi-Instance GPU partitioning](https://developer.nvidia.com/blog/getting-the-most-out-of-the-a100-gpu-with-multi-instance-gpu/#mig_partitioning_and_gpu_instance_profiles) on NVIDIA A100 devices for optimal resource utilization. -Getting this configuration into your deployment will depend on how Flyte is deployed on your cluster. If you use the default Opta/Helm route, you'll need to amend your Helm chart values ([example](https://github.com/flyteorg/flyte/blob/cc127265aec490ad9537d29bd7baff828043c6f5/charts/flyte-core/values.yaml#L629)) so that they end up [here](https://github.com/flyteorg/flyte/blob/3d265f166fcdd8e20b07ff82b494c0a7f6b7b108/deployment/eks/flyte_helm_generated.yaml#L521). +Example: +```python +from flytekit import ImageSpec, Resources, task +from flytekit.extras.accelerators import A100 + +image = ImageSpec( + base_image= "ghcr.io/flyteorg/flytekit:py3.10-1.10.2", + name="pytorch", + python_version="3.10", + packages=["torch"], + builder="default", + registry="", + ) + +@task(requests=Resources( gpu="1"), + accelerator=A100.partition_2g_10gb, + ) # 2 compute instances with 10GB memory slice +def gpu_available() -> bool: + return torch.cuda.is_available() +``` +### How it works? +In this case, ``flytepropeller`` injects an additional node selector expression to the resulting pod spec, indicating the partition size: + +```yaml +spec: + affinity: + nodeAffinity: + requiredDuringSchedulingIgnoredDuringExecution: + nodeSelectorTerms: + - matchExpressions: + - key: nvidia.com/gpu.accelerator + operator: In + values: + - nvidia-tesla-a100 + - key: nvidia.com/gpu.partition-size + operator: In + values: + - 2g.10gb +``` + +Plus and additional toleration: + +```yaml + tolerations: + - effect: NoSchedule + key: nvidia.com/gpu.accelerator + operator: Equal + value: nvidia-tesla-a100 + - effect: NoSchedule + key: nvidia.com/gpu.partition-size + operator: Equal + value: 2g.10gb +``` +In consequence, your Kubernetes worker nodes should have matching labels so the Kubernetes scheduler can admit the Pods: + +Node labels (example): +```yaml +nvidia.com/gpu.partition-size: "2g.10gb" +nvidia.com/gpu.accelerator: "nvidia-tesla-a100" +``` + + If you want to better control scheduling, configure your worker nodes with taints that match the tolerations injected to the pods. + + +In the example the ``nvidia.com/gpu.partition-size`` key is arbitrary and can be controlled from the Helm chart: + +**flyte-core** +```yaml +configmap: + k8s: + plugins: + k8s: + gpu-partition-size-node-label: "nvidia.com/gpu.partition-size" #change to match your node's config +``` +**flyte-binary** +```yaml +configuration: + inline: + plugins: + k8s: + gpu-partition-size-node-label: "nvidia.com/gpu.partition-size" #change to match your node's config +``` +The ``2g.10gb`` value comes from the [NVIDIA A100 supported instance profiles](https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html#concepts) and it's controlled from the Task decorator (``accelerator=A100.partition_2g_10gb`` in the above example). Depending on the profile requested in the Task, Flyte will inject the corresponding value for the node selector. + +>Learn more about the full list of ``flytekit`` supported partition profiles and task decorator options [here](https://docs.flyte.org/en/latest/api/flytekit/generated/flytekit.extras.accelerators.A100.html#flytekit.extras.accelerators.A100) + +## Additional use cases + +### Request an A100 device with no preference on partition configuration + +Example: + +```python +from flytekit import ImageSpec, Resources, task +from flytekit.extras.accelerators import A100 + +image = ImageSpec( + base_image= "ghcr.io/flyteorg/flytekit:py3.10-1.10.2", + name="pytorch", + python_version="3.10", + packages=["torch"], + builder="default", + registry="", + ) + +@task(requests=Resources( gpu="1"), + accelerator=A100, + ) +def gpu_available() -> bool: + return torch.cuda.is_available() +``` + +#### How it works? + +flytekit uses a default `2g.10gb`partition size and `flytepropeller` injects the node selector that matches labels on nodes with an `A100` device: + +```yaml +spec: + affinity: + nodeAffinity: + requiredDuringSchedulingIgnoredDuringExecution: + nodeSelectorTerms: + - matchExpressions: + - key: nvidia.com/gpu.accelerator + operator: In + values: + - nvidia-tesla-a100 +``` + +### Request an unpartitioned A100 device +The goal is to run the task using the resources of the entire A100 GPU: + +```python +from flytekit import ImageSpec, Resources, task +from flytekit.extras.accelerators import A100 + +image = ImageSpec( + base_image= "ghcr.io/flyteorg/flytekit:py3.10-1.10.2", + name="pytorch", + python_version="3.10", + packages=["torch"], + builder="default", + registry="", + ) + +@task(requests=Resources( gpu="1"), + accelerator=A100.unpartitioned, + ) # request the entire A100 device +def gpu_available() -> bool: + return torch.cuda.is_available() +``` + +#### How it works? + +When this task is evaluated `flytepropeller` injects a node selector expression that only matches nodes where the label specifying a partition size is **not** present: + +```yaml +spec: + affinity: + nodeAffinity: + requiredDuringSchedulingIgnoredDuringExecution: + nodeSelectorTerms: + - matchExpressions: + - key: nvidia.com/gpu.accelerator + operator: In + values: + - nvidia-tesla-a100 + - key: nvidia.com/gpu.partition-size + operator: DoesNotExist +``` +The expression can be controlled from the Helm values: + + +**flyte-core** +```yaml +configmap: + k8s: + plugins: + k8s: + gpu-unpartitioned-node-selector-requirement : + key: cloud.google.com/gke-gpu-partition-size #change to match your node label configuration + operator: Equal + value: DoesNotExist +``` +**flyte-binary** +```yaml +configuration: + inline: + plugins: + k8s: + gpu-unpartitioned-toleration: + gpu-unpartitioned-node-selector-requirement : + key: cloud.google.com/gke-gpu-partition-size #change to match your node label configuration + operator: Equal + value: DoesNotExist +``` + + +Scheduling can be further controlled by setting in the Helm chart a toleration that `flytepropeller` injects into the task pods: + +**flyte-core** +```yaml +configmap: + k8s: + plugins: + k8s: + gpu-unpartitioned-toleration: + effect: NoSchedule + key: cloud.google.com/gke-gpu-partition-size + operator: Equal + value: DoesNotExist +``` +**flyte-binary** +```yaml +configuration: + inline: + plugins: + k8s: + gpu-unpartitioned-toleration: + effect: NoSchedule + key: cloud.google.com/gke-gpu-partition-size + operator: Equal + value: DoesNotExist +``` +In case your Kubernetes worker nodes are using taints, they need to match the above configuration.