You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The following post vLLM v0.6.0: 2.7x Throughput Improvement and 5x Latency Reduction | vLLM Blog mentions a 10 req/s on vLLM on prefill heavy prompts with limited output.
I'm running 8 bit quantified llama3.1-70b on 4xA100 40GB with python -m vllm.entrypoints.openai.api_server --model /lama3.1-70b/ --host 0.0.0.0 --port 8000 --tensor-parallel-size 4 --gpu-memory-utilization 0.9 --quantization bitsandbytes --load-format bitsandbytes --served-model-name llama --num-scheduler-steps 10 --enable-chunked-prefill --max-num-batched-tokens 2048
and get the following results
+-----------------+---------------+---------+-------------------+
| Output Length | Input Length | Req/s | Output Tokens/s |
+=================+===============+=========+===================+
| 2 words | 263 | 4.77 | 14.59 |
+-----------------+---------------+---------+-------------------+
| 4 words | 263 | 4.31 | 26.36 |
+-----------------+---------------+---------+-------------------+
| 6 words | 263 | 4.16 | 36.34 |
+-----------------+---------------+---------+-------------------+
Why am I getting half the performance with less heavy prompts? Is it because i'm running the 8 bit precision model on 40GB GPUs instead of 16 bit precision on 80GB GPUs?
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
The following post vLLM v0.6.0: 2.7x Throughput Improvement and 5x Latency Reduction | vLLM Blog mentions a 10 req/s on vLLM on prefill heavy prompts with limited output.
I'm running 8 bit quantified llama3.1-70b on 4xA100 40GB with python -m vllm.entrypoints.openai.api_server --model /lama3.1-70b/ --host 0.0.0.0 --port 8000 --tensor-parallel-size 4 --gpu-memory-utilization 0.9 --quantization bitsandbytes --load-format bitsandbytes --served-model-name llama --num-scheduler-steps 10 --enable-chunked-prefill --max-num-batched-tokens 2048
and get the following results
+-----------------+---------------+---------+-------------------+
| Output Length | Input Length | Req/s | Output Tokens/s |
+=================+===============+=========+===================+
| 2 words | 263 | 4.77 | 14.59 |
+-----------------+---------------+---------+-------------------+
| 4 words | 263 | 4.31 | 26.36 |
+-----------------+---------------+---------+-------------------+
| 6 words | 263 | 4.16 | 36.34 |
+-----------------+---------------+---------+-------------------+
Why am I getting half the performance with less heavy prompts? Is it because i'm running the 8 bit precision model on 40GB GPUs instead of 16 bit precision on 80GB GPUs?
Beta Was this translation helpful? Give feedback.
All reactions