-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModDivSqrt.v
322 lines (292 loc) · 16.7 KB
/
ModDivSqrt.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
Require Import Vector.
Import VectorNotations.
Require Import Kami.AllNotations FpuKami.Definitions FpuKami.Classify FpuKami.Round.
Require Import List.
Require Import Psatz.
Import ListNotations.
(*
The following section was inlined from Multicycle.v in ModulesKami.
*)
Section Combinational.
Variable inpK outK opK k: Kind.
Variable numIter: nat.
Notation numIterSz := (Nat.log2_up (numIter + 2)).
Variable loopFn: forall ty, opK @# ty -> Bit numIterSz @# ty -> LetExprSyntax ty k -> LetExprSyntax ty k.
Variable evalLoopFn: type opK -> word numIterSz -> type k -> type k.
Variable evalLoopFn_prop: forall op n e,
evalLetExpr (loopFn op n e) = evalLoopFn (evalExpr op) (evalExpr n) (evalLetExpr e).
Variable isLoop: forall ty, inpK @# ty -> Bool @# ty.
Variable getLoopInit: forall ty, inpK @# ty -> k @# ty.
Variable getNonLoopVal: forall ty, inpK @# ty -> k @# ty.
Variable getOutput: forall ty, opK @# ty -> k @# ty -> LetExprSyntax ty outK.
Variable getOp: forall ty, inpK @# ty -> opK @# ty.
Variable combine1 combine2 combine3 combine4:
forall ty, opK @# ty -> Bit numIterSz @# ty -> k @# ty -> Bool @# ty.
Fixpoint comb_loop ty op n (e: LetExprSyntax ty k) :=
match n with
| 0 => e
| S m => comb_loop op m (loopFn op ($m)%kami_expr e)
end.
End Combinational.
Section DivSqrt.
Variable expWidthMinus2 sigWidthMinus2: nat.
Local Notation expWidthMinus1 := (expWidthMinus2 + 1).
Local Notation expWidth := (expWidthMinus1 + 1).
Local Notation sigWidthMinus1 := (sigWidthMinus2 + 1).
Local Notation sigWidth := (sigWidthMinus1 + 1).
Local Notation sigWidthPlus1 := (sigWidth + 1).
Local Notation sigWidthPlus2 := (sigWidthPlus1 + 1).
Definition inpK := STRUCT_TYPE {
"isSqrt" :: Bool ;
"nfA" :: NF expWidthMinus2 sigWidthMinus2 ;
"nfB" :: NF expWidthMinus2 sigWidthMinus2 ;
"round" :: Bit 3 ;
"tiny" :: Bool }.
Definition outK := STRUCT_TYPE {
"isSqrt" :: Bool ;
"inNf" :: NF expWidthMinus2 sigWidthPlus1 ;
"outNf" :: NF expWidthMinus2 sigWidthMinus2 ;
"outNFException" :: ExceptionFlags ;
(* "out" :: RecFN expWidthMinus2 sigWidthMinus2 ; *)
(* "outFN" :: FN expWidthMinus2 sigWidthMinus2 ; *)
"exception" :: ExceptionFlags;
"invalidExc" :: Bool ;
"infiniteExc" :: Bool }.
Definition opK := STRUCT_TYPE {
"isLess" :: Bool ;
"isSqrt" :: Bool ;
"round" :: Bit 3 ;
"tiny" :: Bool ;
"sigB" :: Bit sigWidthMinus1 ;
"isNaN" :: Bool ;
"isInf" :: Bool ;
"isZero" :: Bool ;
"sign" :: Bool ;
"sExp" :: Bit (expWidth + 1) ;
"majorExc" :: Bool ;
"oddExp" :: Bool}.
Definition k := STRUCT_TYPE {
"sig" :: Bit (sigWidthPlus2) ;
"rem" :: Bit (sigWidthPlus2) ;
"summary" :: Bool }.
Definition numIter := sigWidthPlus2.
Definition numIterSz := (Nat.log2_up (numIter + 2)).
Axiom cheat: forall t, t.
Local Open Scope kami_expr.
Definition isLoop ty (inp: inpK @# ty): Bool @# ty :=
let rawA := (inp @% "nfA") in
let rawB := (inp @% "nfB") in
let specialCaseA := rawA @% "isNaN" || rawA @% "isInf" || rawA @% "isZero" in
let specialCaseB := rawB @% "isNaN" || rawB @% "isInf" || rawB @% "isZero" in
let normalCase_div := (! specialCaseA) && (! specialCaseB) in
let normalCase_sqrt := (! specialCaseA) && (! (rawA @% "sign")) in
IF inp @% "isSqrt" then normalCase_sqrt else normalCase_div.
Definition getOp ty (inp: inpK @# ty) : opK @# ty.
refine (
let rawA := (inp @% "nfA") in
let rawB := (inp @% "nfB") in
let isInf := (IF inp @% "isSqrt"
then rawA @% "isInf"
else rawA @% "isInf" || rawB @% "isZero") in
let isZero := (IF inp @% "isSqrt"
then rawA @% "isZero"
else rawA @% "isZero" || rawB @% "isInf") in
let sign := (IF inp @% "isSqrt"
then rawA @% "sign"
else (rawA @% "sign") ^^ (rawB @% "sign")) in
let NaN_div := ((rawA @% "isZero") && (rawB @% "isZero")) || ((rawA @% "isInf") && (rawB @% "isInf")) in
let NaN_sqrt := ((! (rawA @% "isNaN")) && (! (rawA @% "isZero"))) && (rawA @% "sign") in
let majorExc := (IF inp @% "isSqrt"
then ((isSigNaNRawFloat rawA) || NaN_sqrt)
else ((((isSigNaNRawFloat rawA) || (isSigNaNRawFloat rawB)) || NaN_div) ||
(((! (rawA @% "isNaN")) && (! (rawA @% "isInf"))) && (rawB @% "isZero")))) in
let lsbExp := UniBit (TruncLsb 1 expWidth) (castBits _ (rawA @% "sExp")) in
let isLess := rawA @% "sig" < rawB @% "sig" in
let newExp := (IF rawB @% "sign"
then (rawA @% "sExp") + (rawB @% "sExp")
else (rawA @% "sExp") - (rawB @% "sExp")) in
(STRUCT { "isLess" ::= isLess ;
"isSqrt" ::= inp @% "isSqrt" ;
"round" ::= inp @% "round" ;
"tiny" ::= inp @% "tiny" ;
"sigB" ::= rawB @% "sig" ;
"isNaN" ::= (IF inp @% "isSqrt"
then rawA @% "isNaN" || NaN_sqrt
else rawA @% "isNaN" || rawB @% "isNaN" || NaN_div) ;
"isInf" ::= isInf ;
"isZero" ::= isZero ;
"sign" ::= sign ;
"sExp" ::= (IF inp @% "isSqrt"
(* We compute up-front the exponent for the output float.
Let the following give the triple determining our input
float: s is the sign, b=2 is the radix, and e is the exponent.
If the input is (-1)^s * m * 2^e,
The exponent of the result when computing
the square root is e >> 2 = e // 2.
This makes sense when considering the following derivation:
sqrt((-1)^s * m * 2^e) = (-1)^s * sqrt(m) * sqrt(2^e)
[since our sqrt just maintains the input sign
and since square root respects multiplication]
= (-1)^s * sqrt(m) * 2^(e/2)
[since sqrt(x) = x^(1/2)]
So the meat of the computation happening in the loop body for
square roots is really sqrt(m), the square root of the
mantissa of the input float.*)
then (rawA @% "sExp") >>> $$ WO~1
else (IF isLess
then newExp - $1
else newExp));
"majorExc" ::= majorExc ;
"oddExp" ::= lsbExp == $1
})); clear; abstract lia.
Defined.
Definition getLoopInit ty (inp: inpK @# ty) : k @# ty.
refine
(let rawA := (inp @% "nfA") in
let a_width_sigWidthPlus1 := {< $$ WO~0, $$ WO~0, $$ WO~1, rawA @% "sig" >} << $$ WO~1 in
let a_width_sigWidth := {< $$ WO~0, $$ WO~0, $$ WO~1, rawA @% "sig" >} in
let a_width_sigWidthPlus2 := a_width_sigWidthPlus1 << $$ WO~1 in
let a2_width_sigWidthPlus1 := a_width_sigWidthPlus1 << $$ WO~1 in
let a2_width_sigWidthPlus2 := a2_width_sigWidthPlus1 << $$ WO~1 in
let lsbExp := UniBit (TruncLsb 1 expWidth) (castBits _ (rawA @% "sExp")) in
(* let rem := (IF (inp @% "isSqrt") *)
(* then (IF lsbExp == $1 *)
(* then a2_width_sigWidthPlus1 *)
(* else a_width_sigWidthPlus1) >> $$ WO~1 *)
(* else a_width_sigWidth) in *)
let rem := (IF (inp @% "isSqrt")
then (IF lsbExp == $1
then a_width_sigWidthPlus1
else a_width_sigWidth)
else a_width_sigWidth) in
(STRUCT {"sig" ::= $ 0 ;
"rem" ::= rem ;
"summary" ::= rem != $ 0}) : k @# ty).
abstract (clear; lia).
Defined.
Definition getNonLoopVal := getLoopInit.
Local Notation mul c v := (IF c then v else $0)%kami_expr.
Definition loopFn ty (op: opK @# ty) (iter: Bit numIterSz @# ty)
(accumIn: LetExprSyntax ty k): LetExprSyntax ty k.
refine
(LETE bit : Bit (sigWidthPlus2 + 1) <- RetE ($1 << iter);
(* Since we proceed from higher iterations down, at the
beginning of the algorithm $1 << iter ticks the bit in the
1's position of the mantissa. At the final step of the
algorithm, $1 << 1 would be the smallest representable
non-zero mantissa with an extra bit for rounding
information.
The width of `bit` is (sigWidthPlus2 + 1) to include an
extra bit used in determining rounding. *)
LETE accum : k <- accumIn;
LETE sig2 : Bit (sigWidthPlus2 + 1) <- RetE (({< $$ WO~0, #accum @% "sig" >}) << $$ WO~1);
LETE rem2 : Bit (sigWidthPlus2 + 1) <- RetE (({< $$ WO~0, #accum @% "rem" >}) << $$ WO~1);
LETE b_width_sigWidth : Bit (sigWidthPlus2 + 1) <- RetE ({< $$ WO~0, $$ WO~0, $$ WO~0, $$ WO~1, op @% "sigB" >});
LETE b2_width_sigWidth: Bit (sigWidthPlus2 + 1) <- RetE (#b_width_sigWidth << $$ WO~1);
LETE trialTerm : Bit (sigWidthPlus2 + 1) <- RetE (IF op @% "isSqrt"
then #sig2 .| #bit
else #b2_width_sigWidth);
LETE c : Bool <- RetE (#rem2 >= #trialTerm);
(* Trunc_Lsb _ 1 (mul #c #bit) just tacks off the msb of
c * b_n which here is just the extra bit used for rounding. *)
LETE newSig : Bit sigWidthPlus2 <- RetE (#accum @% "sig" .| UniBit (TruncLsb _ 1) (mul #c #bit));
LETE newRem : Bit (sigWidthPlus2 + 1)<- RetE (#rem2 - mul #c #trialTerm);
LETE newSummary : Bool <- RetE (#newRem != $0);
LETE newAccum: k <- RetE (STRUCT {"sig" ::= #newSig ;
"rem" ::= (* UniBit (TruncLsb _ 1) #newRem *)
(IF iter != $0
then UniBit (TruncLsb _ 1) #newRem
else #accum @% "rem");
"summary" ::= (* #numSummary *)
IF #c then #newSummary else #accum @% "summary"});
LETE msbSig <- RetE (UniBit (TruncMsb _ 1) (#accum @% "sig"));
RetE (IF (op @% "isSqrt" && iter == ($sigWidth + $1))
|| (iter == $0 && #msbSig == $1)
then #accum
else #newAccum)).
Defined.
Definition getOutput ty (op: opK @# ty) (accum: k @# ty): LetExprSyntax ty outK.
refine (
LETE fullSig : Bit (1 + sigWidthPlus1) <- RetE ({< UniBit (TruncLsb _ 1) (accum @% "sig"),
pack (accum @% "summary") >});
LETE invalidExc : Bool <- RetE ((op @% "majorExc") && (op @% "isNaN"));
LETE infiniteExc : Bool <- RetE ((op @% "majorExc") && ! (op @% "isNaN"));
LETE nf1 : NF expWidthMinus2 sigWidthPlus1 <-
RetE (STRUCT { "isNaN" ::= ((op @% "isNaN"));
"isInf" ::= ((op @% "isInf"));
"isZero" ::= op @% "isZero" ;
"sign" ::= op @% "sign" ;
"sExp" ::= op @% "sExp" ;
"sig" ::= castBits _ (IF op @% "isLess" || (op @% "isSqrt")
then (#fullSig << $$ WO~1)
else #fullSig) });
LETE nf: NF expWidthMinus2 sigWidthPlus1 <-
RetE (STRUCT { "isNaN" ::= ((#nf1 @% "isNaN") || #invalidExc);
"isInf" ::= ((#nf1 @% "isInf") || #infiniteExc);
"isZero" ::= #nf1 @% "isZero" ;
"sign" ::= #nf1 @% "sign" ;
"sExp" ::= #nf1 @% "sExp" ;
"sig" ::= #nf1 @% "sig" });
LETE roundIn : RoundInput expWidthMinus2 _ <- RetE (STRUCT { "in" ::= #nf ;
"afterRounding" ::= op @% "tiny" ;
"roundingMode" ::= op @% "round" });
LETE roundedNF: OpOutput expWidthMinus2 sigWidthMinus2 <- RoundNF_def_expr _ _ #roundIn;
LETE roundedNF_out: NF expWidthMinus2 sigWidthMinus2 <- RetE (#roundedNF @% "out");
LETE roundedNF_except: ExceptionFlags <- RetE (#roundedNF @% "exceptionFlags");
LETE roundedNF_exception : ExceptionFlags
<-
RetE (STRUCT {
"invalid" ::= #invalidExc;
"infinite" ::= #infiniteExc;
"overflow" ::= #roundedNF_except @% "overflow";
"underflow" ::= #roundedNF_except @% "underflow";
"inexact" ::= #roundedNF_except @% "inexact" });
(* LETE rec: RecFN expWidthMinus2 sigWidthMinus2 <- RetE (getRecFN_from_NF #roundedNF_out); *)
(* LETE fn: FN expWidthMinus2 sigWidthMinus2 <- RetE (getFN_from_RecFN #rec); *)
LETE out: outK <- RetE (STRUCT {
"isSqrt" ::= op @% "isSqrt";
"inNf" ::= #nf1;
"outNf" ::= #roundedNF_out;
"outNFException" ::= #roundedNF_except;
(* "out" ::= #rec; *)
(* "outFN" ::= #fn; *)
"exception" ::= #roundedNF_exception;
"invalidExc" ::= #invalidExc;
"infiniteExc" ::= #infiniteExc });
RetE #out);
try abstract (simpl; lia).
Defined.
Definition combine1 ty (op: opK @# ty) (n: Bit (Nat.log2_up (numIter + 2)) @# ty)
(accum: k @# ty) :=
(n == ($numIter-$1)).
Definition combine2 ty (op: opK @# ty) (n: Bit (Nat.log2_up (numIter + 2)) @# ty)
(accum: k @# ty) :=
((op @% "isSqrt") && n == ($numIter-$2)).
Definition combine3 ty (op: opK @# ty) (n: Bit (Nat.log2_up (numIter + 2)) @# ty)
(accum: k @# ty) :=
((op @% "isSqrt") && n == ($numIter-$3) && op @% "oddExp").
Definition combine4 ty (op: opK @# ty) (n: Bit (Nat.log2_up (numIter + 2)) @# ty)
(accum: k @# ty) :=
(n == $0 && (UniBit (TruncMsb sigWidthPlus1 1) (accum @% "sig")) == $1).
Definition div_sqrt_expr ty (input : inpK @# ty)
: outK ## ty
:= LETC op : opK <- getOp input;
LETC initVal
: k
<- getLoopInit input;
LETE loop_out
: k
<- comb_loop numIter loopFn (#op) numIter (RetE (#initVal));
getOutput (#op)
(ITE (isLoop input) (#loop_out) (#initVal)).
Local Close Scope kami_expr.
(*
Definition newSeq := seq_module numIter loopFn isLoop getLoopInit getNonLoopVal getOutput getOp combine1 combine2 combine3 combine4 "multi".
Definition newComb := comb_module numIter loopFn isLoop getLoopInit getNonLoopVal getOutput getOp "multi".
Definition rtlModParam := makeRtl newSeq nil.
*)
End DivSqrt.
(*
Definition DivSqrt32 := rtlModParam 6 22.
Definition DivSqrt64 := rtlModParam 9 51.
*)