-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiv.v
79 lines (67 loc) · 2.8 KB
/
Div.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
Require Import Kami.AllNotations FpuKami.ModDivSqrt.
Fixpoint iterator A (f: nat -> A -> A) (val: A) (max: nat) :=
match max with
| 0 => val
| S m => iterator f (f m val) m
end.
Section divnat.
Variable n d sz: nat.
Let d' := d * Nat.pow 2 sz.
Section iter.
Variable i: nat.
Variable q_rem: (nat * nat).
Let q := fst q_rem.
Let rem := snd q_rem.
Let c := getBool (Compare_dec.le_lt_dec d' (2*rem)).
Let new_q := q + if c then Nat.pow 2 i else 0.
Let new_rem := 2*rem - if c then d' else 0.
Definition div_rem_nat := (new_q, new_rem).
End iter.
Definition div_rem_nat_full := iterator div_rem_nat (0, n) sz.
Definition div_rem_nat_final := (fst div_rem_nat_full, snd div_rem_nat_full / Nat.pow 2 sz).
End divnat.
Section divnat_expr.
Variable sz: nat.
Definition DivRemDen := STRUCT_TYPE {
"den" :: Bit sz ;
"quo" :: Bit sz ;
"rem" :: Bit (sz + sz) }.
Definition DivRem := STRUCT_TYPE {
"quo" :: Bit sz ;
"rem" :: Bit sz }.
Let opK := Bit 0.
Local Open Scope kami_expr.
Section loopFn.
Variable ty: Kind -> Type.
Definition loopFn (_: opK @# ty) (i: Bit (Nat.log2_up (sz + 2)) @# ty) (q_rem: DivRemDen ## ty): DivRemDen ## ty.
refine (
LETE q_rem' <- q_rem;
LETC d <- #q_rem' @% "den";
LETC d' <- {< $$ WO~0, #d, $$ (wzero sz) >};
LETC q <- #q_rem' @% "quo";
LETC rem <- #q_rem' @% "rem";
LETC rem2 <- castBits _ ({< #rem, $$ WO~0 >});
LETC c <- #d' <= #rem2;
LETC new_q <- #q + (IF #c then $1 << i else $0);
LETC new_rem <- #rem2 - (IF #c then #d' else $0);
RetE ((STRUCT {
"den" ::= #d ;
"quo" ::= #new_q ;
"rem" ::= UniBit (TruncLsb (sz + sz) 1) #new_rem }): DivRemDen @# ty)).
abstract lia.
Defined.
Local Close Scope kami_expr.
End loopFn.
Variable ty: Kind -> Type.
Variable n d : Bit sz @# ty.
Definition div_rem_full := comb_loop sz loopFn ($$ WO) sz (RetE (STRUCT {"den" ::= d; "quo" ::= $$ (wzero sz); "rem" ::= ZeroExtend sz n})).
Definition div_rem_final: DivRem ## ty := (LETE dr: DivRemDen <- div_rem_full;
LETC ret: DivRem <- STRUCT { "quo" ::= #dr @% "quo" ;
"rem" ::= UniBit (TruncMsb _ sz) (#dr @% "rem") } ;
RetE #ret).
End divnat_expr.
Section test.
Let test := evalLetExpr (@div_rem_final 4 type (Const type (ConstBit (wones 4))) $3)%kami_expr.
Let div_test := wordToNat (test (Fin.F1)).
Let rem_test := wordToNat (test (Fin.FS Fin.F1)).
End test.