-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathSFC.m
228 lines (199 loc) · 10.3 KB
/
SFC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
function [cohrfreq,cohrmag,SFcorr,Spikenum,trials]=SFC(filename,corrwind,epochrg,binwidth)
%% Spike Field Coeherence analysis
% Returns correlation/coherence between spikes and LFP signals in temporal
% domain (cross correlation) and frequency domain (spike-field coherence)
% Comparisons data from one file over multiple conditions
% Needs alignment file from GUI
%VP - 10/1/2013
% example of variable inputs:
% filename='H125L6A2_17581_error2sac_clus1';
% corrwind= 100;
load(filename);
numcomp=size(dataaligned,2);
if numcomp > 2 && strcmp(dataaligned(2).alignlabel,'stop_cancel')% keep only sac and nc
dataaligned=dataaligned([1 3]);
numcomp=size(dataaligned,2);
end
trials=zeros(1,numcomp);
comptype='alignement';
%preallocate
rsLFP=cell(1,numcomp);
LFPData=cell(1,numcomp);
SpikeData=cell(1,numcomp);
% spikes_o=cell(1,numcomp);
spikes=cell(1,numcomp);
cohrmag=cell(2,numcomp);
cohrfreq=cell(2,numcomp);
SFcorr=cell(3,numcomp);
epochsz=epochrg(2)-epochrg(1); %e.g. 256 bins
Spikenum=zeros(1,numcomp);
% define parameters
timeunit = binwidth/1000 ; %in ms
duration=epochsz*timeunit;
%timevector = (1:epochsz)*timeunit;
df=1/duration;
cohrfreq{1,1} = 0:250/(epochsz/2/binwidth):250;
cohrfreq{1,2} = 0:250/(epochsz/2/binwidth):250;
cohrfreq{2,1} = (-epochsz/2/binwidth:epochsz/2/binwidth-1)*df;
cohrfreq{2,2} = (-epochsz/2/binwidth:epochsz/2/binwidth-1)*df;
for cmpn=1:numcomp
%% get sampling rate
load([cell2mat(regexp(filename,'^\w+_\d+','match')) 'f']);
varlist=who;
eval(['recSR =' cell2mat(varlist(~cellfun(@isempty ,(cellfun(@(x) strfind(x,filename(1:3)), varlist, 'UniformOutput', false)))))]);
clear(cell2mat(varlist(~cellfun(@isempty ,(cellfun(@(x) strfind(x,filename(1:3)), varlist, 'UniformOutput', false))))));
recSR=1/recSR.interval; %sampling rate
%% get epoch's LFP data
LFPData{cmpn}=dataaligned(1,cmpn).rawsigs;
LFPData{cmpn}=LFPData{cmpn}(:,round(max(dataaligned(1,cmpn).alignrawidx)+epochrg(1)*recSR/1000):...
round(max(dataaligned(1,cmpn).alignrawidx)+epochrg(2)*recSR/1000-1));
%% unnecessarily split up operation:
% round(recSR*timeunit) is number of data point per bin
% round(epochrg()/binwidth) is epoch size in ms. That is number of
% bins, adjusted by bin size (in ms).
% LFPData{cmpn}=LFPData{cmpn}(:,round(max(dataaligned(1,cmpn).alignrawidx)+(round(recSR*timeunit))*round(epochrg(1)/binwidth)):...
% round(max(dataaligned(1,cmpn).alignrawidx)+(round(recSR*timeunit))*round(epochrg(2)/binwidth)-1));
%% get epoch's Spike data
% no need to compensate for sampling rate, already in ms
SpikeData{cmpn}=dataaligned(1,cmpn).rasters;
SpikeData{cmpn}=SpikeData{cmpn}(:,dataaligned(1,cmpn).alignidx+epochrg(1):...
dataaligned(1,cmpn).alignidx+epochrg(2)-1);
%% pre-allocate
MUAfourier= zeros(trials(cmpn),length(cohrfreq{2,cmpn}));
LFPfourier= zeros(trials(cmpn),length(cohrfreq{2,cmpn}));
LFPMUAxcorr= zeros(trials(cmpn),corrwind/binwidth*2+1);
STA=nan(trials(cmpn),corrwind/binwidth*2+1);
fullSTA=nan(trials(cmpn),recSR/1000*corrwind/binwidth*2+1);
TrialCoher=zeros(epochsz/binwidth/2+1,trials(cmpn));
trials(cmpn)=size(LFPData{cmpn},1);
%% downsampling and binning
for trnm=1:trials(cmpn)
% downsampling LFP to match bin size if necessary (e.g., 500Hz for 2ms bins)
if (1/timeunit)/recSR ~= 1
rsLFP{cmpn} = [rsLFP{cmpn} resample(LFPData{cmpn}(trnm,:),1,round(recSR*timeunit))];
else
rsLFP{cmpn} = [rsLFP{cmpn} LFPData{cmpn}(trnm,:)];
end
% try binning instead of using resample
% [~,bin] = histc(1:LFPepochsz,linspace(1,LFPepochsz,LFPepochsz/(recSR/1000)/binwidth));
% sparsepoch = sparse(1:LFPepochsz,bin,LFPData{cmpn}(trnm,:));
% bLFP=full(sum(sparsepoch)./sum(sparsepoch~=0));
% bLFP(isnan(bLFP))=0;
%% old method to extract epoch's spikes
% trialepoch=dataaligned(1,cmpn).rasters(trnm,dataaligned(1,cmpn).alignidx+epochrg(1):dataaligned(1,cmpn).alignidx+epochrg(2)-1);
%
% % bin spikes if necessary
% if binwidth>1
% [~,bin] = histc(1:epochsz,linspace(1,epochsz,epochsz/binwidth));
% sparsepoch_o = sparse(1:epochsz,bin,trialepoch);
% rsSpikes_o=full(sum(sparsepoch_o)./sum(sparsepoch_o~=0));
% rsSpikes_o(isnan(rsSpikes_o))=0;
% % get spikes, format in serial sequence
% spikes_o{cmpn} = [spikes_o{cmpn} rsSpikes_o];
% else
% spikes_o{cmpn} = [spikes_o{cmpn} trialepoch];
% end
%% new method
if binwidth>1
[~,bin] = histc(1:epochsz,linspace(1,epochsz,epochsz/binwidth));
sparsepoch = sparse(1:epochsz,bin,SpikeData{cmpn}(trnm,:));
rsSpikes=full(sum(sparsepoch)./sum(sparsepoch~=0));
rsSpikes(isnan(rsSpikes))=0;
% get spikes, format in serial sequence
spikes{cmpn} = [spikes{cmpn} rsSpikes];
else
spikes{cmpn} = [spikes{cmpn} SpikeData{cmpn}(trnm,:)];
end
end
%% trial by trial treatment: sum / xcorr / fft
for trnm=1:trials(cmpn)
% spikes for period of interest in that trial
trspikes=spikes{cmpn}(epochsz/binwidth*(trnm-1)+1:epochsz/binwidth*trnm);
% LFP for period of interest in that trial
trLFP=rsLFP{cmpn}(epochsz/binwidth*(trnm-1)+1:epochsz/binwidth*trnm);
% cross-correlation
LFPMUAxcorr(trnm,:)=xcorr(trLFP,trspikes,corrwind/binwidth);% LFP summation over +/- sliding window (e.g., 100ms) triggered by spikes. Use 'coeff' for normalization: not advised here
% simply summing LFP fragments around each spike within that window
% (dividing by number of spikes below)
windowct=find(trspikes);
if ~isempty(windowct)
LFPfrag=nan(length(windowct),corrwind/binwidth*2+1);
fullLFPfrag=nan(length(windowct),recSR/1000*corrwind/binwidth*2+1);
for spkwd=1:length(windowct)
if windowct(spkwd)-corrwind/binwidth<1 || windowct(spkwd)+corrwind/binwidth>epochsz/binwidth
continue;
else
LFPfrag(spkwd,:)=trLFP(windowct(spkwd)-corrwind/binwidth:windowct(spkwd)+corrwind/binwidth);
fullLFPfrag(spkwd,:)=LFPData{cmpn}(trnm,windowct(spkwd)*50-(corrwind/binwidth)*50:windowct(spkwd)*50+(corrwind/binwidth)*50); % not downsampled fragment
% plot(fullLFPfrag);
% pause
Spikenum(cmpn)=Spikenum(cmpn)+1;
end
end
STA(trnm,:)=nansum(LFPfrag);
fullSTA(trnm,:)=nansum(fullLFPfrag);
else
STA(trnm,:)=nan(1,corrwind/binwidth*2+1);
fullSTA(trnm,:)=nan(1,recSR/1000*corrwind/binwidth*2+1);
end
% fullSTAsem(trnm,:)=nanstd(fullLFPfrag)/ sqrt(size(fullLFPfrag,1)); %standard error of the mean
% fullSTAsem(trnm,:) = fullSTAsem(trnm,:) * 1.96;
% figure; hold on;
% patch([1:length(fullSTA(trnm,:)),fliplr(1:length(fullSTA(trnm,:)))],...
% [-fullSTAsem(trnm,:),fliplr(fullSTAsem(trnm,:))],'b','EdgeColor','none','FaceAlpha',0.5);
% % plot(fullSTA(trnm,:)./Spikenum(cmpn));
% set(gca,'xlim',[0 length(fullLFPfrag)]);
% coherence with Matlab's mscohere
TrialCoher(:,trnm)=mscohere(trspikes,trLFP,hanning(2*corrwind/binwidth+1),[],epochsz/binwidth,500); %frequencies will be [0 250] in nfft/2 steps
% example for higher resolution: mscohere(spikes,rsLFP,hanning(1024),512,1024,500);
% Fourier transforms for spectral calculations
trspikes=trspikes-mean(trspikes);
MUAfourier(trnm,:)=fft(trspikes);
LFPfourier(trnm,:)=fft(trLFP);
end
%% average values over trials
% SFcorr{cmpn}=nansum(LFPMUAcorr);
% SFcorr{cmpn}=fullgauss_filtconv(SFcorr{cmpn},10,0)./(trials(cmpn)-sum(isnan(sum(LFPMUAcorr,2))));
cohrmag{1,cmpn}=nanmean(TrialCoher,2); % bar(0:250/(epochsz/2):250,cohrmag{1,cmpn})
%% Power spectra and cross spectrum.
[CS_MUA_MUA, CS_MUA_LFP, CS_LFP_LFP] = deal(zeros(1,length(cohrfreq{2,cmpn})));
for trnm=1:trials(cmpn)
CS_MUA_MUA = CS_MUA_MUA + timeunit^2/duration*(MUAfourier(trnm,:).*conj(MUAfourier(trnm,:)))/trials(cmpn);
CS_MUA_LFP = CS_MUA_LFP + timeunit^2/duration*(MUAfourier(trnm,:).*conj(LFPfourier(trnm,:)))/trials(cmpn);
CS_LFP_LFP = CS_LFP_LFP + timeunit^2/duration*(LFPfourier(trnm,:).*conj(LFPfourier(trnm,:)))/trials(cmpn);
end
%% calculate coherence with 'manual' method
cohr = CS_MUA_LFP.*conj(CS_MUA_LFP) ./CS_MUA_MUA ./CS_LFP_LFP;
cohrmag{2,cmpn}=fftshift(cohr);
%collect values
SFcorr{1,cmpn}=STA;
SFcorr{2,cmpn}=LFPMUAxcorr;
SFcorr{3,cmpn}=fullSTA;
%% calculate significance threshold
% numsection=floor(length(spikes{cmpn})/epochsz);
% cohrsiglev=1-0.05^(1/(numsection-1));
%% plots
% figure
% % plot(cohrfreq{2,cmpn},cohrmag{2,cmpn})
% % ylim([0 1]); xlim([-50 50])
% plot(SFcorr{1,cmpn});
% hold on
% plot(SFcorr{2,cmpn},'r');
% set(gca,'xlim',[1 65],'xtick',2 : 30 : 62,'xticklabel',[-60 0 60])
% % STA confidence interval
% STAsem=std(LFPMUAxcorr)/ sqrt(size(LFPMUAxcorr,1)); %standard error of the mean
% STAsem = STAsem * 1.96;
% patch([1:length(SFcorr{2,cmpn}),fliplr(1:length(SFcorr{2,cmpn}))],[SFcorr{2,cmpn}-STAsem,fliplr(SFcorr{2,cmpn}+STAsem)],'r','EdgeColor','none','FaceAlpha',0.1);
% figure;
% bar(cohrfreq{1,cmpn}(3:find((cohrfreq{1,cmpn})<50,1,'last'),1),...
% cohrmag{1,cmpn}(3:find((cohrfreq{1,cmpn})<50,1,'last'),1));
% % plot(cohrfreq{cmpn}(2:find((cohrfreq{cmpn})<50,1,'last'),1),...
% % cohrmag{cmpn}(2:find((cohrfreq{cmpn})<50,1,'last'),1),'LineWidth',2.5);
% hold on
% plot(1:round(cohrfreq{1,cmpn}(find(cohrfreq{1,cmpn}<50,1,'last'))),...
% ones(1,round(cohrfreq{1,cmpn}(find(cohrfreq{1,cmpn}<50,1,'last')))).*cohrsiglev,'r','LineWidth',2.5)
%
% title({'Coherence estimate'},'FontSize',20,'FontName','calibri');
% xlabel({'Frequency (Hz)'},'FontSize',16,'FontName','calibri');
% ylabel({'Magnitude'},'FontSize',16,'FontName','calibri');
end