-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlatency_analysis.m
624 lines (590 loc) · 34 KB
/
latency_analysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
function [timeShift,keepRec]=latency_analysis(behavData,neuralData,plotdata)
%% Latency Analysis
%
% We used an alignment algorithm to find a relative temporal offset for the
% neural and behavior data on each trial as follows. Single-trial PETHs
% were generated as described previously.
%
% We examined a 2 s window around the Go signal (-1.5 s pre, to +0.5 s
% post). Spikes from each trial were smoothed with a causal half-Gaussian
% kernel with a full-width SD of 200 ms—that is, the firing rate reported
% at time t averages over spikes in an 200-ms-long window preceding t. The
% resulting smooth traces were sampled every 10 ms.
%
% Then a trial-averaged PETH was generated for each cell. For each trial we
% found the time of the peak of the cross-correlation function between the
% PETH for that trial and the trial-averaged PETH. We then shifted each
% trial accordingly and iterated this process until the variance of the
% trial-averaged PETH converged. Usually this process required fewer than 5
% iterations. The output of this alignment procedure was an offset time for
% each trial, which indicated the relative neural latency for that trial.
% We performed the same alignment procedure on head-velocity data acquired
% with the video-tracking system, which produced a relative behavioral
% latency for each trial. We then tested whether the neural latency was
% correlated with the behavioral latency and whether for the population the
% average correlation was significantly different than zero (Bootstrapped
% confidence intervals of the mean). We also compared, in the same way, the
% neural latencies of pairs of simultaneously recorded neurons.
%
% Population analysis
% To perform population analyses of firing rates, we first normalized the
% perievent time histograms (PETHs) of each cell by computing the mean and
% standard deviation (over time and over trial classes) of the cell’s
% PETHs, and then subtracted that mean and divided by that standard
% deviation. The resulting zscored PETHs were then averaged across cells to
% obtain z-scored population PETHs.
%
switch nargin
case 2
plotdata=0;
end
%% recordings
% [pkOffsets]=cell(size(neuralData,1),1);
peth=cell(size(neuralData,1),2);
sortedRTidx=cell(size(neuralData,1),1);
[sortedSac,sortedTgt]=deal(cell(size(neuralData,1),1));
start=1500;
stop=999;
sigma=200;
preAlign=min([(floor(min(cellfun(@(x) x{1}(1),neuralData(:,4,2)))/10)*10)-3*sigma start]); % keep as much trace as possible, typically ~900
postAlign=min([min(cellfun(@(x) size(x,2),neuralData(:,2,2))-cellfun(@(x) x{1}(1),neuralData(:,4,2)))-3*sigma-1 stop]); % typically 999
plotIdx=round((preAlign-400)/10):round((preAlign+799)/10); %plotting from 400ms before tgt to 800 ms after
for rec=1:size(neuralData,1)
for trial=1:size(neuralData{rec,2,2},1)
% trials aligned to sac
% trialconv = fullgauss_filtconv(neuralData{rec,2}(trial,neuralData{rec,3}-(1000+3*sigma):neuralData{rec,3}+3*sigma+199),sigma,1).*1000;
% trials aligned to tgt
trialconv = fullgauss_filtconv(neuralData{rec,2,2}(trial,...
neuralData{rec, 4,2}{1, trial}(1)-(preAlign+3*sigma):...
neuralData{rec, 4,2}{1, trial}(1)+3*sigma+postAlign),sigma,1).*1000;
peth{rec,1}(trial,:) = trialconv(1:10:end);%downsample
end
% %keep unsorted sdf
% unsortedPETH{rec,1}=peth{rec,1};
% then sort trials by RT
[sortedRT,sortedRTidx{rec,1}]=sort(behavData{rec, 3});% sort reation times and keep sort index
peth{rec,1}=peth{rec,1}(sortedRTidx{rec,1},:); % sort PETHs accordingly
% if aligned to saccades:
% sortedTgt{rec}=cellfun(@(x) x(1),neuralData{rec, 4}(sortedRTidx))-(neuralData{rec,3}-1000);
% sortedSac{rec}=sortedRT+sortedTgt{rec};
% aligned to tgt:
sortedSac{rec}=sortedRT+preAlign;
sortedTgt{rec}=sortedSac{rec}-sortedRT;
sortedTgt{rec}=round(sortedTgt{rec}/10);%downsample
sortedSac{rec}=round(sortedSac{rec}/10);%downsample
end
%% plotting rec trials
if plotdata
if round((preAlign+stop)/10) ~= size(peth{rec,1},2) %round((preAlign+stop)/10) should be = to size(peth{rec,1},2)
%something wrong
disp('check error in plotIdx, latency_analysis');
return;
end
figure; hold on;
imagesc(1:size(peth{rec,1}(:,plotIdx),2),1:size(peth{rec,1}(:,plotIdx),1),peth{rec,1}(:,plotIdx));
colormap(parula)
tgth=plot(sortedTgt{rec}-round((preAlign-400)/10),1:size(peth{rec,1},1),'Marker','s','MarkerSize',4,'MarkerEdgeColor','k','MarkerFaceColor',[0.7, 0.9, 1]);
sach=plot(sortedSac{rec}-round((preAlign-400)/10),1:size(peth{rec,1},1),'Marker','.','MarkerFaceColor',[0, 0.5, 0.1]);
cbh=colorbar;
cbh.Label.String = 'Firing rate (Hz)';
set(gca,'xticklabel',-200:200:800,'TickDir','out','FontSize',10); %'xtick',1:100:max ... xticklabel misses 1st mark for some reason
xlabel('Time, aligned to target')
ylabel('Trial # - Trials sorted by reaction time')
legend([tgth sach],{'Target On', 'Saccade Onset'},'location','Southeast')
title('Recording sdf - Native alignement')
axis('tight');
% close(gcf)
end
%% eye movement plots
ev_peth=cell(size(behavData,1),2);
startEV=200; %(we don't want to include pre-fix eye mvt when shifting)
stopEV=max([behavData{:, 3}])+200;
sigmaEV=20;
preAlignEV=min([(floor(min(cellfun(@(x) x{1}(1),neuralData(:,4,2)))/10)*10)-3*sigmaEV startEV]);
postAlignEV=min([min(cellfun(@(x) size(x,2),neuralData(:,2,2))-cellfun(@(x) x{1}(1),neuralData(:,4,2)))-3*sigmaEV-1 stopEV]);
plotIdxEV=round((preAlignEV-100)/10):round((preAlignEV+min([postAlignEV 799]))/10); %plotting from 100ms before tgt to 800 ms after
for rec=1:size(behavData,1)
for trial=1:size(behavData{rec,5},1)
trial_ev = fullgauss_filtconv(behavData{rec,5}(trial,...
neuralData{rec, 4,2}{1, trial}(1)-(preAlignEV+3*sigmaEV):... % 400ms before tgt
neuralData{rec, 4,2}{1, trial}(1)+3*sigmaEV+postAlignEV),sigmaEV,1).*1000; % 800 ms after
% trial_ev = behavData{rec,5}(trial,...
% neuralData{rec, 4,2}{1, trial}(1)-preAlignEV:... % 400ms before tgt
% neuralData{rec, 4,2}{1, trial}(1)+postAlignEV).*1000; % 800 ms after
ev_peth{rec,1}(trial,:) = trial_ev(1:10:end);%downsample
end
% sort trials by RT
% [~,sortedRTidx]=sort(behavData{rec, 3}); % sort reation times
ev_peth{rec,1}=ev_peth{rec,1}(sortedRTidx{rec,1},:); % sort ev_PETHs accordingly
end
%% plotting eye vel trials
if plotdata
figure('position',[1950 570 560 420]); hold on;
imagesc(1:size(ev_peth{rec,1}(:,plotIdxEV),2),1:size(ev_peth{rec,1}(:,plotIdxEV),1),ev_peth{rec,1}(:,plotIdxEV));
colormap(copper)
% using preAlign below because startEV ~= start, and thus need preAlignEV+(preAlign-preAlignEV)
tgth=plot(sortedTgt{rec}-round((preAlign-100)/10),1:size(ev_peth{rec,1},1),'Marker','o','MarkerSize',4,'MarkerEdgeColor','k','MarkerFaceColor',[0.7, 0.9, 1]);
sach=plot(sortedSac{rec}-round((preAlign-100)/10),1:size(ev_peth{rec,1},1),'Marker','.','MarkerFaceColor',[0, 0.5, 0.1]);
cbh=colorbar;
cbh.Label.String = 'Eye velocity (Degree/sec)';
set(gca,'xticklabel',0:100:800,'TickDir','out','FontSize',10); %'xtick',1:100:max ...
xlabel('Time, aligned to target')
ylabel('Trial # - Trials sorted by reaction time')
legend([tgth sach],{'Target On', 'Saccade Onset'},'location','Southeast')
title('Neuronal activity - Native alignement')
axis('tight');
% close(gcf)
end
%% time-shifting to maximize similarity (and check later if smoothing eyevel over 200ms changes anything)
% Then a trial-averaged PETH was generated for each cell. For each trial we
% found the time of the peak of the cross-correlation function between the
% PETH for that trial and the trial-averaged PETH. We then shifted each
% trial accordingly and iterated this process until the variance of the
% trial-averaged PETH converged. Usually this process required fewer than 5
% iterations. The output of this alignment procedure was an offset time for
% each trial, which indicated the relative neural latency for that trial.
timeShift=cell(size(neuralData,1),4);%
trials=cell(size(neuralData,1),1);
% time-shifting recordings
for rec=1:size(neuralData,1)
trials{rec}=1:size(peth{rec,1},1); %keep track of those removed
nonNanTrials=~isnan(mean(peth{rec,1},2));
trials{rec}=trials{rec}(nonNanTrials); % remove nan trials
indivTrials=peth{rec,1}(nonNanTrials,:);
peth_av=mean(zscore(indivTrials,0,2));
pkCc=min([round(size(neuralData{rec,2,2}(sortedRTidx{rec,1}(nonNanTrials),:),1)/10) 5])*ones(size(neuralData{rec,2,2}(sortedRTidx{rec,1}(nonNanTrials),:),1),1);
thld=sum(min([round(size(neuralData{rec,2,2}(sortedRTidx{rec,1}(nonNanTrials),:),1)/10) 5])*ones(size(neuralData{rec,2,2}(sortedRTidx{rec,1}(nonNanTrials),:),1),1))/100;
pkCcsum=sum(pkCc);
iter=0;
timeShift{rec,1}=zeros(size(indivTrials,1),1);
boundShift=zeros(1,2);
while abs(pkCcsum)>1 && iter<10
iter= iter + 1;
for trial=1:size(indivTrials,1)
% figure;hold on; plot(peth{rec,1}(trial,:));plot(peth{rec,2});
if pkCc(trial)>0
pkCc(trial) = min([siglag(zscore(indivTrials(trial,:),0,2),peth_av) pkCc(trial)]); %prevent further drifting
elseif pkCc(trial)<0
pkCc(trial) = max([siglag(zscore(indivTrials(trial,:),0,2),peth_av) pkCc(trial)]); % idem
else
% well, don't touch it
end
end
%shift trials
%dampen shift by discounting outliers
% shift_bounds=[min(pkCc(abs(pkCc)<2*std(pkCc))) max(pkCc(abs(pkCc)<2*std(pkCc)))];
%dampening only doesn't work well enough. So take out outliers
%(unless that empties the trials)
if sum(abs(pkCc)<2*std(pkCc))>0
indivTrials=indivTrials(abs(pkCc)<2*std(pkCc),:);trials{rec}=trials{rec}(abs(pkCc)<2*std(pkCc));timeShift{rec,1}=timeShift{rec,1}(abs(pkCc)<2*std(pkCc),:);
pkCc=pkCc(abs(pkCc)<2*std(pkCc),:);
end
% then set shift bounds
% shift_bounds=[min([min(pkCc(abs(pkCc)<2*std(pkCc))) 0]) max([max(pkCc(abs(pkCc)<2*std(pkCc))) 0])]; boundShift=boundShift+shift_bounds;
if sum(abs(pkCc))>thld
shift_bounds=[min([min(pkCc(abs(pkCc)<3*std(pkCc))) 0]) max([max(pkCc(abs(pkCc)<3*std(pkCc))) 0])]; boundShift=boundShift+shift_bounds;
else
shift_bounds=[min(pkCc) max(pkCc)]; boundShift=boundShift+shift_bounds;
end
%pre-allocate
indivTrials_realigned=zeros(size(indivTrials,1),size(indivTrials,2)+abs(min(shift_bounds))+abs(max(shift_bounds)));
% indivTrials_realigned=repmat(median(indivTrials,2),1,size(indivTrials,2)+abs(min(shift_bounds))+abs(max(shift_bounds))).*ones(size(indivTrials,1),size(indivTrials,2)+abs(min(shift_bounds))+abs(max(shift_bounds)));
for trial=1:size(indivTrials)
% if pkCc(trial)<min(shift_bounds)
% pkCc(trial)=min(shift_bounds);
% elseif pkCc(trial)>max(shift_bounds)
% pkCc(trial)=max(shift_bounds);
% end
if pkCc(trial)<min(shift_bounds)
if sum(abs(pkCc))>thld
pkCc(trial)=min(shift_bounds);
else
shift_bounds=[pkCc(trial) shift_bounds(2)];
boundShift=boundShift+shift_bounds;
end
elseif pkCc(trial)>max(shift_bounds)
if sum(abs(pkCc))>thld
pkCc(trial)=max(shift_bounds);
else
shift_bounds=[shift_bounds(1) pkCc(trial)];
boundShift=boundShift+shift_bounds;
end
end
timeShift{rec,1}(trial)=timeShift{rec,1}(trial)-pkCc(trial);% positive pkCc: later than the average peak, so pushed back.
indivTrials_realigned(trial,abs(max(shift_bounds))-pkCc(trial)+1:length(indivTrials(trial,:))+abs(max(shift_bounds))-pkCc(trial))=indivTrials(trial,:);
end
indivTrials=indivTrials_realigned; %(:,abs(min(pkCc))+1:size(indivTrials,2)+abs(min(pkCc)));
peth_av=mean(zscore(indivTrials,0,2));
pkCcsum=sum(abs(pkCc)); % to prevent execution stops mid-loop
end
% figure; hold on;
% imagesc(1:size(indivTrials(:,plotIdx+boundShift(2)),2),1:size(indivTrials,1),indivTrials(:,plotIdx+boundShift(2)));
% colormap(parula)
% tgth=plot(sortedTgt{rec}(trials{rec})-round((preAlign-400)/10)+timeShift{rec,1}',1:size(timeShift{rec,1},1),'Marker','s','MarkerSize',4,'MarkerEdgeColor','k','MarkerFaceColor',[0.7, 0.9, 1]);
% sach=plot(sortedSac{rec}(trials{rec})-round((preAlign-400)/10)+timeShift{rec,1}',1:size(timeShift{rec,1},1),'Marker','.','MarkerFaceColor',[0, 0.5, 0.1]);
% cbh=colorbar;
% cbh.Label.String = 'Firing rate (Hz)';
% set(gca,'xticklabel',-200:200:800,'TickDir','out','FontSize',10); %'xtick',1:100:max ... xticklabel misses 1st mark for some reason
% xlabel('Time shifted rasters')
% ylabel('Trial # - Trials sorted by reaction time')
% legend([tgth sach],{'Target On', 'Saccade Onset'},'location','Southeast')
% title('Recording sdf - Native alignement')
% axis('tight');
% close(gcf);
end
%% plotting shifted rec trials
if plotdata
figure; hold on;
imagesc(1:size(indivTrials(:,plotIdx+boundShift(2)),2),1:size(indivTrials,1),indivTrials(:,plotIdx+boundShift(2)));
colormap(parula)
tgth=plot(sortedTgt{rec}(trials{rec})-round((preAlign-400)/10)+timeShift{rec,1}',1:size(timeShift{rec,1},1),'Marker','s','MarkerSize',4,'MarkerEdgeColor','k','MarkerFaceColor',[0.7, 0.9, 1]);
sach=plot(sortedSac{rec}(trials{rec})-round((preAlign-400)/10)+timeShift{rec,1}',1:size(timeShift{rec,1},1),'Marker','.','MarkerFaceColor',[0, 0.5, 0.1]);
cbh=colorbar;
cbh.Label.String = 'Firing rate (Hz)';
set(gca,'xticklabel',-200:200:800,'TickDir','out','FontSize',10); %'xtick',1:100:max ... xticklabel misses 1st mark for some reason
xlabel('Time shifted rasters')
ylabel('Trial # - Trials sorted by reaction time')
legend([tgth sach],{'Target On', 'Saccade Onset'},'location','Southeast')
title('Recording sdf - Native alignement')
axis('tight');
% close(gcf);
end
%% time-shifting eye vel
% simply align all RTs%
for rec=1:size(neuralData,1)
timeShift{rec,2}=ceil((mean(sort(behavData{rec, 3}(sortedRTidx{rec,1})))'-sort(behavData{rec, 3}(sortedRTidx{rec,1})))'/10);
% indivTrials=ev_peth{rec,1};
% boundShift=[min(-timeShift{rec,2}) max(-timeShift{rec,2})];
% %pre-allocate
% indivTrials_realigned=zeros(size(indivTrials,1),size(indivTrials,2)+abs(min(boundShift))+abs(max(boundShift)));
% for trial=1:size(indivTrials,1)
% indivTrials_realigned(trial,abs(max(boundShift))+timeShift{rec,2}(trial)+1:length(indivTrials(trial,:))+abs(max(boundShift))+timeShift{rec,2}(trial))=indivTrials(trial,:);
% end
% indivTrials=indivTrials_realigned; %(:,abs(min(pkCc))+1:size(indivTrials,2)+abs(min(pkCc)));
timeShift{rec,2}=timeShift{rec,2}(trials{rec});
end
if plotdata
figure('position',[2528 570 560 420]); hold on;
imagesc(1:size(indivTrials(trials{rec},plotIdxEV+boundShift(2)),2),1:size(indivTrials(trials{rec}),1),indivTrials(trials{rec},plotIdxEV+boundShift(2)));
colormap(copper)
tgth=plot(sortedTgt{rec}(trials{rec})-round((preAlign-100)/10)+timeShift{rec,2}',1:size(timeShift{rec,2},1),'Marker','s','MarkerSize',4,'MarkerEdgeColor','k','MarkerFaceColor',[0.7, 0.9, 1]);
sach=plot(sortedSac{rec}(trials{rec})-round((preAlign-100)/10)+timeShift{rec,2}',1:size(timeShift{rec,2},1),'Marker','.','MarkerFaceColor',[0, 0.5, 0.1]);
cbh=colorbar;
cbh.Label.String = 'Firing rate (Hz)';
set(gca,'xticklabel',0:100:800,'TickDir','out','FontSize',10); %'xtick',1:100:max ... xticklabel misses 1st mark for some reason
xlabel('Time shifted rasters')
ylabel('Trial # - Trials sorted by reaction time')
legend([tgth sach],{'Target On', 'Saccade Onset'},'location','Southeast')
title('Eye velocity - Native alignement')
axis('tight');
% close(gcf);
end
%% [sanity check] time-shifting eye vel the same way as recordings
%if using it, reset order with sortedRTidx{rec,1} !!!
% for rec=1:size(neuralData,1)
% % peth_av=mean(zscore(ev_peth{rec,1},0,2));% figure, plot(mean(ev_peth{rec,1}))
% peth_av=mean(ev_peth{rec,1});
% indivTrials=ev_peth{rec,1};
% pkCc=min([round(size(neuralData{rec,2,2},1)/10) 5])*ones(size(neuralData{rec,2,2},1),1);
% thld=sum(min([round(size(neuralData{rec,2,2},1)/10) 5])*ones(size(neuralData{rec,2,2},1),1))/100;
% pkCcsum=sum(pkCc);
% iter=0;
% trials{rec}=1:size(indivTrials,1); %keep track of those removed
% timeShift{rec,2}=zeros(size(indivTrials,1),1);
% boundShift=zeros(1,2);
% while abs(pkCcsum)>1 && iter<10
% iter= iter + 1;
% for trial=1:size(indivTrials,1)
% % figure;hold on; plot(indivTrials(trial,:));plot(mean(ev_peth{rec,1}));
% % figure;hold on; plot(zscore(indivTrials(trial,:),0,2));plot(peth_av);
% if pkCc(trial)>0
% % pkCc(trial) = min([siglag(zscore(indivTrials(trial,:),0,2),peth_av) pkCc(trial)]); %prevent further drifting
% % pkCc(trial) = min([siglag(indivTrials(trial,:),peth_av) pkCc(trial)]);
% pkCc(trial) = siglag(indivTrials(trial,:),peth_av);
% elseif pkCc(trial)<0
% % pkCc(trial) = max([siglag(zscore(indivTrials(trial,:),0,2),peth_av) pkCc(trial)]); % idem
% % pkCc(trial) = max([siglag(indivTrials(trial,:),peth_av) pkCc(trial)]);
% pkCc(trial) = siglag(indivTrials(trial,:),peth_av);
% else
% pkCc(trial) = siglag(indivTrials(trial,:),peth_av);
% % well, don't touch it
% end
% end
% %shift trials
% %dampen shift by discounting outliers
% % shift_bounds=[min(pkCc(abs(pkCc)<2*std(pkCc))) max(pkCc(abs(pkCc)<2*std(pkCc)))];
% %dampening only doesn't work well enough. So take out outliers
% %(unless that empties the trials)
% % if sum(abs(pkCc)<2*std(pkCc))>0
% % indivTrials=indivTrials(abs(pkCc)<2*std(pkCc),:);trials{rec}=trials{rec}(abs(pkCc)<2*std(pkCc));timeShift{rec,2}=timeShift{rec,2}(abs(pkCc)<2*std(pkCc),:);
% % pkCc=pkCc(abs(pkCc)<2*std(pkCc),:);
% % end
% % then set shift bounds
% if sum(abs(pkCc))>thld
% shift_bounds=[min([min(pkCc(abs(pkCc)<3*std(pkCc))) 0]) max([max(pkCc(abs(pkCc)<3*std(pkCc))) 0])]; boundShift=boundShift+shift_bounds;
% else
% shift_bounds=[min(pkCc) max(pkCc)]; boundShift=boundShift+shift_bounds;
% end
% %pre-allocate
% indivTrials_realigned=zeros(size(indivTrials,1),size(indivTrials,2)+abs(min(shift_bounds))+abs(max(shift_bounds)));
% % indivTrials_realigned=repmat(median(indivTrials,2),1,size(indivTrials,2)+abs(min(shift_bounds))+abs(max(shift_bounds))).*ones(size(indivTrials,1),size(indivTrials,2)+abs(min(shift_bounds))+abs(max(shift_bounds)));
% for trial=1:size(indivTrials)
% if pkCc(trial)<min(shift_bounds)
% if sum(abs(pkCc))>thld
% pkCc(trial)=min(shift_bounds);
% else
% shift_bounds=[pkCc(trial) shift_bounds(2)];
% boundShift=boundShift+shift_bounds;
% end
% elseif pkCc(trial)>max(shift_bounds)
% if sum(abs(pkCc))>thld
% pkCc(trial)=max(shift_bounds);
% else
% shift_bounds=[shift_bounds(1) pkCc(trial)];
% boundShift=boundShift+shift_bounds;
% end
% end
% timeShift{rec,2}(trial)=timeShift{rec,2}(trial)-pkCc(trial);
% indivTrials_realigned(trial,abs(max(shift_bounds))-pkCc(trial)+1:length(indivTrials(trial,:))+abs(max(shift_bounds))-pkCc(trial))=indivTrials(trial,:);
% end
% indivTrials=indivTrials_realigned; %(:,abs(min(pkCc))+1:size(indivTrials,2)+abs(min(pkCc)));
% peth_av=mean(zscore(indivTrials,0,2));
% pkCcsum=sum(abs(pkCc)); % to prevent execution stops mid-loop
% end
%
% %% plotting shifted eye vel trials
% figure; hold on;
% imagesc(1:size(indivTrials(:,plotIdxEV+boundShift(2)),2),1:size(indivTrials,1),indivTrials(:,plotIdxEV+boundShift(2)));
% colormap(copper)
% tgth=plot(sortedTgt{rec}(trials{rec})-round((preAlign-100)/10)+timeShift{rec,2}',1:size(timeShift{rec,2},1),'Marker','s','MarkerSize',4,'MarkerEdgeColor','k','MarkerFaceColor',[0.7, 0.9, 1]);
% sach=plot(sortedSac{rec}(trials{rec})-round((preAlign-100)/10)+timeShift{rec,2}',1:size(timeShift{rec,2},1),'Marker','.','MarkerFaceColor',[0, 0.5, 0.1]);
% cbh=colorbar;
% cbh.Label.String = 'Firing rate (Hz)';
% set(gca,'xticklabel',0:100:800,'TickDir','out','FontSize',10); %'xtick',1:100:max ... xticklabel misses 1st mark for some reason
% xlabel('Time shifted rasters')
% ylabel('Trial # - Trials sorted by reaction time')
% legend([tgth sach],{'Target On', 'Saccade Onset'},'location','Southeast')
% title('Eye velocity - Native alignement')
% axis('tight');
% close(gcf);
% end
%% time-shifting SSD from SST before
%%%%%%% do not remove trials: make FR time-shift on subset of NSST preceded by SST
%if removing trials from the FR/eye vel analysis, not enough trials left
% postSST_NSST=cellfun(@(x,y) x(ismember(x,y+1)),behavData(:,1),behavData(:,2),'UniformOutput',false);
% postSST_NSST=cellfun(@(x,y) (ismember(x,y)),trials,postSST_NSST,'UniformOutput',false);
% preNSST_SST=cellfun(@(x,y,z) ismember(x,y(z)-1),behavData(:,2),trials,postSST_NSST,'UniformOutput',false);
% for rec=1:size(neuralData,1)
% try
% timeShift{rec,3}=timeShift{rec,1}(postSST_NSST{rec});
% ssds=[behavData{rec,8}{1,1};behavData{rec,8}{1,2}];
% timeShift{rec,4}=ceil((mean(sort(ssds))'-sort(ssds))'/10);
% timeShift{rec,4}=timeShift{rec,4}(preNSST_SST{rec});
% catch
% continue
% end
% end
% let's shift FR of trials limited to those following a SST
% keep behav data only from recordings with enough SSD AND where number of
% CST and NCST (behavData(:,8)) matches number of SS trials
% (behavData(:,2))
keepRec=find(cellfun(@(x) x>0, cellfun(@(x) size(x{1,1},1)>5,behavData(:,8),'UniformOutput',false),'UniformOutput',true) & ...
cellfun(@(x,y) size(x,2)==size(y{1,2},1),behavData(:,2),behavData(:,8),'UniformOutput',true));
%%%% why are there so many of non-matching cells now?
behavData=behavData(keepRec,:);peth=peth(keepRec,:);neuralData=neuralData(keepRec,:,:);
trials=trials(keepRec,:);sortedRTidx=sortedRTidx(keepRec,:);%timeShift=timeShift(keepRec,:);
% post SS trial NSSTs
postSST_NSST=cellfun(@(x,y) ismember(x,y+1),behavData(:,1),behavData(:,2),'UniformOutput',false); %all SST
%NCS trials
NCSTrials=cellfun(@(x,y) x(end-size(y{1,2},1)+1:end),behavData(:,2),behavData(:,8),'UniformOutput',false);% only non-canceled ones
postNCSST_NSST=cellfun(@(x,y) ismember(x,y+1),behavData(:,1),NCSTrials,'UniformOutput',false);% only non-canceled ones
%get back SS trials preceding those NCSS trials
preNCSST_SST=cellfun(@(x,y,z) x(ismember(x,y(z)-1)),NCSTrials,behavData(:,1),postNCSST_NSST,'UniformOutput',false);
% get sorted NCS trial index
NCSTrialsIdx=cellfun(@(x,y) ismember(x,y),NCSTrials,preNCSST_SST,'UniformOutput',false);% canceled ones
[~,NCSTrialsIdxSort]=cellfun(@(x,y,z) sort(x(ismember(y-1,z))),sortedRTidx,behavData(:,1),preNCSST_SST,'UniformOutput',false);
%CS trials
CSTrials=cellfun(@(x,y) x(1:end-size(y{1,2},1)),behavData(:,2),behavData(:,8),'UniformOutput',false);% only canceled ones
postCSST_NSST=cellfun(@(x,y) ismember(x,y+1),behavData(:,1),CSTrials,'UniformOutput',false); %only canceled ones
%get back SS trials preceding those CSS trials
preCSST_SST=cellfun(@(x,y,z) x(ismember(x,y(z)-1)),CSTrials,behavData(:,1),postCSST_NSST,'UniformOutput',false);
% get sorted CS trial index
CSTrialsIdx=cellfun(@(x,y) ismember(x,y),CSTrials,preCSST_SST,'UniformOutput',false);% canceled ones
[~,CSTrialsIdxSort]=cellfun(@(x,y,z) sort(x(ismember(y-1,z))),sortedRTidx,behavData(:,1),preCSST_SST,'UniformOutput',false);
%% first, just plot NSS trials with preceding SSD
% for rec=1:size(neuralData,1)
% % plot for trials following CS
% postCSST_NSST_PETH=peth{rec,1}(postCSST_NSST{rec}(sortedRTidx{rec,1}),:);
% trials{rec}=1:size(postCSST_NSST_PETH,1); %keep track of those removed
% nonNanTrials=~isnan(mean(postCSST_NSST_PETH,2));
% trials{rec}=trials{rec}(nonNanTrials); % remove nan trials
% indivTrials=postCSST_NSST_PETH(nonNanTrials,:);
%
% figure; hold on;
% imagesc(1:size(indivTrials(:,plotIdx),2),1:size(indivTrials,1),indivTrials(:,plotIdx));
% colormap(parula)
%
% ssds=behavData{rec,8}{1,1};
% ssds=ssds(CSTrialsIdx{rec}); ssds=ssds(CSTrialsIdxSort{rec}); %cull and sort
% ssds=ssds(trials{rec}); %cull again
%
% plot(ssds-min(ssds),1:size(ssds,1),'rd')
%
% % plot for trials following NCS
% postNCSST_NSST_PETH=peth{rec,1}(postNCSST_NSST{rec}(sortedRTidx{rec,1}),:);
% trials{rec}=1:size(postNCSST_NSST_PETH,1); %keep track of those removed
% nonNanTrials=~isnan(mean(postNCSST_NSST_PETH,2));
% trials{rec}=trials{rec}(nonNanTrials); % remove nan trials
% indivTrials=postNCSST_NSST_PETH(nonNanTrials,:);
%
% figure; hold on;
% imagesc(1:size(indivTrials(:,plotIdx),2),1:size(indivTrials,1),indivTrials(:,plotIdx));
% colormap(parula)
%
% ssds=behavData{rec,8}{1,2};
% ssds=ssds(NCSTrialsIdx{rec}); ssds=ssds(NCSTrialsIdxSort{rec}); %cull and sort
% ssds=ssds(trials{rec}); %cull again
%
% plot(ssds-min(ssds),1:size(ssds,1),'rd')
% close all
% end
%%
for rec=1:size(neuralData,1)
% postSST_NSST_PETH=peth{rec,1}(postCSST_NSST{rec},:);
postSST_NSST_PETH=peth{rec,1}(postNCSST_NSST{rec},:);
trials{rec}=1:size(postSST_NSST_PETH,1); %keep track of those removed
nonNanTrials=~isnan(mean(postSST_NSST_PETH,2));
trials{rec}=trials{rec}(nonNanTrials); % remove nan trials
indivTrials=postSST_NSST_PETH(nonNanTrials,:);
peth_av=mean(zscore(indivTrials,0,2));
% peth_av=mean(indivTrials);
pkCc=min([round(size(neuralData{rec,2,2}(sortedRTidx{rec,1}(nonNanTrials),:),1)/10) 5])*ones(size(neuralData{rec,2,2}(sortedRTidx{rec,1}(nonNanTrials),:),1),1);
thld=sum(min([round(size(neuralData{rec,2,2}(sortedRTidx{rec,1}(nonNanTrials),:),1)/10) 5])*ones(size(neuralData{rec,2,2}(sortedRTidx{rec,1}(nonNanTrials),:),1),1))/100;
pkCcsum=sum(pkCc);
iter=0;
timeShift{keepRec(rec),3}=zeros(size(indivTrials,1),1);
boundShift=zeros(1,2);
while abs(pkCcsum)>1 && iter<10
iter= iter + 1;
% figure;hold on; plot(peth_av);
for trial=1:size(indivTrials,1)
% plot(indivTrials(trial,:));
if pkCc(trial)>0
pkCc(trial) = min([siglag(zscore(indivTrials(trial,:),0,2),peth_av) pkCc(trial)]); %prevent further drifting
% pkCc(trial) = min([siglag(indivTrials(trial,:),peth_av) pkCc(trial)]); %prevent further drifting
elseif pkCc(trial)<0
pkCc(trial) = max([siglag(zscore(indivTrials(trial,:),0,2),peth_av) pkCc(trial)]); % idem
% pkCc(trial) = max([siglag(indivTrials(trial,:),peth_av) pkCc(trial)]); % idem
else
% well, don't touch it
end
end
%shift trials
%dampen shift by discounting outliers
% shift_bounds=[min(pkCc(abs(pkCc)<2*std(pkCc))) max(pkCc(abs(pkCc)<2*std(pkCc)))];
%dampening only doesn't work well enough. So take out outliers
%(unless that empties the trials)
if sum(abs(pkCc)<2*std(pkCc))>0
indivTrials=indivTrials(abs(pkCc)<2*std(pkCc),:);trials{rec}=trials{rec}(abs(pkCc)<2*std(pkCc));timeShift{keepRec(rec),3}=timeShift{keepRec(rec),3}(abs(pkCc)<2*std(pkCc),:);
pkCc=pkCc(abs(pkCc)<2*std(pkCc),:);
end
% then set shift bounds
% shift_bounds=[min([min(pkCc(abs(pkCc)<2*std(pkCc))) 0]) max([max(pkCc(abs(pkCc)<2*std(pkCc))) 0])]; boundShift=boundShift+shift_bounds;
if sum(abs(pkCc))>thld
shift_bounds=[min([min(pkCc(abs(pkCc)<3*std(pkCc))) 0]) max([max(pkCc(abs(pkCc)<3*std(pkCc))) 0])]; boundShift=boundShift+shift_bounds;
else
shift_bounds=[min(pkCc) max(pkCc)]; boundShift=boundShift+shift_bounds;
end
%pre-allocate
indivTrials_realigned=zeros(size(indivTrials,1),size(indivTrials,2)+abs(min(shift_bounds))+abs(max(shift_bounds)));
% indivTrials_realigned=repmat(median(indivTrials,2),1,size(indivTrials,2)+abs(min(shift_bounds))+abs(max(shift_bounds))).*ones(size(indivTrials,1),size(indivTrials,2)+abs(min(shift_bounds))+abs(max(shift_bounds)));
for trial=1:size(indivTrials)
% if pkCc(trial)<min(shift_bounds)
% pkCc(trial)=min(shift_bounds);
% elseif pkCc(trial)>max(shift_bounds)
% pkCc(trial)=max(shift_bounds);
% end
if pkCc(trial)<min(shift_bounds)
if sum(abs(pkCc))>thld
pkCc(trial)=min(shift_bounds);
else
shift_bounds=[pkCc(trial) shift_bounds(2)];
boundShift=boundShift+shift_bounds;
end
elseif pkCc(trial)>max(shift_bounds)
if sum(abs(pkCc))>thld
pkCc(trial)=max(shift_bounds);
else
shift_bounds=[shift_bounds(1) pkCc(trial)];
boundShift=boundShift+shift_bounds;
end
end
timeShift{keepRec(rec),3}(trial)=timeShift{keepRec(rec),3}(trial)-pkCc(trial);% positive pkCc: later than the average peak, so pushed back.
indivTrials_realigned(trial,abs(max(shift_bounds))-pkCc(trial)+1:length(indivTrials(trial,:))+abs(max(shift_bounds))-pkCc(trial))=indivTrials(trial,:);
end
indivTrials=indivTrials_realigned; %(:,abs(min(pkCc))+1:size(indivTrials,2)+abs(min(pkCc)));
peth_av=mean(zscore(indivTrials,0,2));
% peth_av=mean(indivTrials);
pkCcsum=sum(abs(pkCc)); % to prevent execution stops mid-loop
end
% try
% figure; hold on;
% imagesc(1:size(indivTrials(:,plotIdx+boundShift(2)),2),1:size(indivTrials,1),indivTrials(:,plotIdx+boundShift(2)));
% colormap(parula)
% tgth=plot(sortedTgt{rec}(trials{rec})-round((preAlign-400)/10)+timeShift{keepRec(rec),3}',1:size(timeShift{keepRec(rec),3},1),'Marker','s','MarkerSize',4,'MarkerEdgeColor','k','MarkerFaceColor',[0.7, 0.9, 1]);
% sach=plot(sortedSac{rec}(trials{rec})-round((preAlign-400)/10)+timeShift{keepRec(rec),3}',1:size(timeShift{keepRec(rec),3},1),'Marker','.','MarkerFaceColor',[0, 0.5, 0.1]);
% cbh=colorbar;
% cbh.Label.String = 'Firing rate (Hz)';
% set(gca,'xticklabel',-200:200:800,'TickDir','out','FontSize',10); %'xtick',1:100:max ... xticklabel misses 1st mark for some reason
% xlabel('Time shifted rasters')
% ylabel('Trial # - Trials sorted by reaction time')
% legend([tgth sach],{'Target On', 'Saccade Onset'},'location','Southeast')
% title('Recording sdf - Native alignement')
% axis('tight');
% close(gcf);
% catch
% close(gcf);
% end
end
%% plotting shifted rec trials
if plotdata
figure; hold on;
imagesc(1:size(indivTrials(:,plotIdx+boundShift(2)),2),1:size(indivTrials,1),indivTrials(:,plotIdx+boundShift(2)));
colormap(parula)
tgth=plot(sortedTgt{rec}(trials{rec})-round((preAlign-400)/10)+timeShift{keepRec(rec),1}',1:size(timeShift{keepRec(rec),1},1),'Marker','s','MarkerSize',4,'MarkerEdgeColor','k','MarkerFaceColor',[0.7, 0.9, 1]);
sach=plot(sortedSac{rec}(trials{rec})-round((preAlign-400)/10)+timeShift{keepRec(rec),1}',1:size(timeShift{keepRec(rec),1},1),'Marker','.','MarkerFaceColor',[0, 0.5, 0.1]);
cbh=colorbar;
cbh.Label.String = 'Firing rate (Hz)';
set(gca,'xticklabel',-200:200:800,'TickDir','out','FontSize',10); %'xtick',1:100:max ... xticklabel misses 1st mark for some reason
xlabel('Time shifted rasters')
ylabel('Trial # - Trials sorted by reaction time')
legend([tgth sach],{'Target On', 'Saccade Onset'},'location','Southeast')
title('Recording sdf - Native alignement')
axis('tight');
% close(gcf);
end
% postSST_NSST=cellfun(@(x,y) x(y),behavData(:,1),postSST_NSST,'UniformOutput',false);
% postNCSST_NSST=cellfun(@(x,y) x(y),behavData(:,1),postNCSST_NSST,'UniformOutput',false);
% postCSST_NSST=cellfun(@(x,y) x(y),behavData(:,1),postCSST_NSST,'UniformOutput',false);
% preNSST_SST=cellfun(@(x,y,z) ismember(x,y(z)-1),behavData(:,2),postNCSST_NSST,trials,'UniformOutput',false);
% preNSST_SST=cellfun(@(x,y,z) ismember(x,y(z)-1),NCSTrials,postNCSST_NSST,trials,'UniformOutput',false);
% preNSST_SST=cellfun(@(x,y,z) ismember(x,y(z)-1),NCSTrials,postCSST_NSST,trials,'UniformOutput',false);
for rec=1:size(neuralData,1)
try
% ssds=[behavData{rec,8}{1,1};behavData{rec,8}{1,2}];
% ssds=behavData{rec,8}{1,2};
% ssds=behavData{rec,8}{1,1};
% timeShift{keepRec(rec),4}=ceil((mean(sort(ssds))-sort(ssds))/10);
% timeShift{keepRec(rec),4}=timeShift{keepRec(rec),4}(preNSST_SST{rec});
ssds=behavData{rec,8}{1,2};
ssds=ssds(NCSTrialsIdx{rec}); ssds=ssds(NCSTrialsIdxSort{rec}); %cull and sort
ssds=ssds(trials{rec}); %cull again
timeShift{keepRec(rec),4}=ceil((mean(sort(ssds))-sort(ssds))/10);
catch
continue
end
end
% timeShift{keepRec(rec),3}=timeShift{keepRec(rec),1}(postSST_NSST{rec});
% ssds=[behavData{rec,8}{1,1};behavData{rec,8}{1,2}];
% timeShift{keepRec(rec),4}=ceil((mean(sort(ssds))'-sort(ssds))'/10);
% timeShift{keepRec(rec),4}=timeShift{keepRec(rec),4}(preNSST_SST{rec});