-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranslate.py
45 lines (41 loc) · 1.57 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import cv2
import torch
from dataset import build_dataset
from models import RelationalNet
def translate(question, answer):
colors = ['red ', 'green ', 'blue ', 'orange ', 'gray ', 'yellow ']
answer_sheet = ['yes', 'no', 'rectangle', 'circle', '1', '2', '3', '4', '5', '6']
query = ''
query += colors[question.tolist()[0:6].index(1)]
if question[6] == 1:
if question[8] == 1:
query += 'shape?'
if question[9] == 1:
query += 'left?'
if question[10] == 1:
query += 'up?'
if question[7] == 1:
if question[8] == 1:
query += 'closest shape?'
if question[9] == 1:
query += 'furthest shape?'
if question[10] == 1:
query += 'count?'
ans = answer_sheet[answer]
return query, ans
if __name__ == '__main__':
net = RelationalNet()
net.load_state_dict(torch.load('./model/model.pth', 'cpu'))
net.eval()
image, rel_questions, rel_answers, norel_questions, norel_answers = build_dataset(1)
image = image[0].unsqueeze(0)
questions = torch.cat((rel_questions, norel_questions), 0)
answers = torch.cat((rel_answers, norel_answers), 0)
for question, answer in zip(questions, answers):
pre = net(image, question).argmax(1).item()
query, ans = translate(question, answer)
print("Ground Truth:", query, '==>', ans)
query, ans = translate(question, pre)
print("Relational Net:", query, '==>', ans)
cv2.imshow('Image', cv2.resize(image.squeeze().permute(1, 2, 0).numpy(), (512, 512)))
cv2.waitKey(0)