forked from openvinotoolkit/nncf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
788 lines (666 loc) · 29.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
# Copyright (c) 2023 Intel Corporation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import sys
import time
import warnings
from copy import deepcopy
from functools import partial
from pathlib import Path
from shutil import copyfile
from typing import Any
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from torch import nn
from torch.backends import cudnn
from torch.cuda.amp.autocast_mode import autocast
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchvision import datasets
from torchvision import models
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torchvision.datasets import CIFAR100
from torchvision.models import InceptionOutputs
from examples.common.paths import configure_paths
from examples.common.sample_config import SampleConfig
from examples.common.sample_config import create_sample_config
from examples.torch.common.argparser import get_common_argument_parser
from examples.torch.common.argparser import parse_args
from examples.torch.common.example_logger import logger
from examples.torch.common.execution import ExecutionMode
from examples.torch.common.execution import get_execution_mode
from examples.torch.common.execution import prepare_model_for_execution
from examples.torch.common.execution import set_seed
from examples.torch.common.execution import start_worker
from examples.torch.common.export import export_model
from examples.torch.common.model_loader import COMPRESSION_STATE_ATTR
from examples.torch.common.model_loader import MODEL_STATE_ATTR
from examples.torch.common.model_loader import extract_model_and_compression_states
from examples.torch.common.model_loader import load_model
from examples.torch.common.model_loader import load_resuming_checkpoint
from examples.torch.common.optimizer import get_parameter_groups
from examples.torch.common.optimizer import make_optimizer
from examples.torch.common.utils import MockDataset
from examples.torch.common.utils import NullContextManager
from examples.torch.common.utils import SafeMLFLow
from examples.torch.common.utils import configure_device
from examples.torch.common.utils import configure_logging
from examples.torch.common.utils import create_code_snapshot
from examples.torch.common.utils import get_run_name
from examples.torch.common.utils import is_pretrained_model_requested
from examples.torch.common.utils import is_staged_quantization
from examples.torch.common.utils import log_common_mlflow_params
from examples.torch.common.utils import make_additional_checkpoints
from examples.torch.common.utils import print_args
from examples.torch.common.utils import write_metrics
from nncf.api.compression import CompressionStage
from nncf.common.accuracy_aware_training import create_accuracy_aware_training_loop
from nncf.common.utils.tensorboard import prepare_for_tensorboard
from nncf.config.utils import is_accuracy_aware_training
from nncf.torch import create_compressed_model
from nncf.torch.checkpoint_loading import load_state
from nncf.torch.dynamic_graph.io_handling import FillerInputInfo
from nncf.torch.initialization import default_criterion_fn
from nncf.torch.initialization import register_default_init_args
from nncf.torch.structures import ExecutionParameters
from nncf.torch.utils import is_main_process
from nncf.torch.utils import safe_thread_call
model_names = sorted(
name for name, val in models.__dict__.items() if name.islower() and not name.startswith("__") and callable(val)
)
def get_argument_parser():
parser = get_common_argument_parser()
parser.add_argument("--dataset", help="Dataset to use.", choices=["imagenet", "cifar100", "cifar10"], default=None)
parser.add_argument(
"--test-every-n-epochs", default=1, type=int, help="Enables running validation every given number of epochs"
)
parser.add_argument(
"--mixed-precision",
dest="mixed_precision",
help="Enables torch.cuda.amp autocasting during training and validation steps",
action="store_true",
)
return parser
def main(argv):
parser = get_argument_parser()
args = parse_args(parser, argv)
config = create_sample_config(args, parser)
if config.dist_url == "env://":
config.update_from_env()
configure_paths(config, get_run_name(config))
copyfile(args.config, osp.join(config.log_dir, "config.json"))
source_root = Path(__file__).absolute().parents[2] # nncf root
create_code_snapshot(source_root, osp.join(config.log_dir, "snapshot.tar.gz"))
if config.seed is not None:
warnings.warn(
"You have chosen to seed training. "
"This will turn on the CUDNN deterministic setting, "
"which can slow down your training considerably! "
"You may see unexpected behavior when restarting "
"from checkpoints."
)
config.execution_mode = get_execution_mode(config)
if config.metrics_dump is not None:
write_metrics(0, config.metrics_dump)
if not is_staged_quantization(config):
start_worker(main_worker, config)
else:
from examples.torch.classification.staged_quantization_worker import staged_quantization_main_worker
start_worker(staged_quantization_main_worker, config)
def inception_criterion_fn(model_outputs: Any, target: Any, criterion: _Loss) -> torch.Tensor:
# From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
output, aux_outputs = model_outputs
loss1 = criterion(output, target)
loss2 = criterion(aux_outputs, target)
return loss1 + 0.4 * loss2
def main_worker(current_gpu, config: SampleConfig):
configure_device(current_gpu, config)
config.mlflow = SafeMLFLow(config)
if is_main_process():
configure_logging(logger, config)
print_args(config)
else:
config.tb = None
set_seed(config)
# define loss function (criterion)
criterion = nn.CrossEntropyLoss()
criterion = criterion.to(config.device)
model_name = config["model"]
train_criterion_fn = inception_criterion_fn if "inception" in model_name else default_criterion_fn
train_loader = train_sampler = val_loader = None
resuming_checkpoint_path = config.resuming_checkpoint_path
nncf_config = config.nncf_config
pretrained = is_pretrained_model_requested(config)
is_export_only = "export" in config.mode and ("train" not in config.mode and "test" not in config.mode)
if is_export_only:
assert pretrained or (resuming_checkpoint_path is not None)
else:
# Data loading code
train_dataset, val_dataset = create_datasets(config)
train_loader, train_sampler, val_loader, init_loader = create_data_loaders(config, train_dataset, val_dataset)
def train_steps_fn(loader, model, optimizer, compression_ctrl, train_steps):
train_epoch(
loader,
model,
criterion,
train_criterion_fn,
optimizer,
compression_ctrl,
0,
config,
train_iters=train_steps,
log_training_info=False,
)
def validate_model_fn(model, eval_loader):
top1, top5, loss = validate(eval_loader, model, criterion, config, log_validation_info=False)
return top1, top5, loss
def model_eval_fn(model):
top1, _, _ = validate(val_loader, model, criterion, config)
return top1
execution_params = ExecutionParameters(config.cpu_only, config.current_gpu)
nncf_config = register_default_init_args(
nncf_config,
init_loader,
criterion=criterion,
criterion_fn=train_criterion_fn,
train_steps_fn=train_steps_fn,
validate_fn=lambda *x: validate_model_fn(*x)[::2],
autoq_eval_fn=lambda *x: validate_model_fn(*x)[1],
val_loader=val_loader,
model_eval_fn=model_eval_fn,
device=config.device,
execution_parameters=execution_params,
)
# create model
model = load_model(
model_name,
pretrained=pretrained,
num_classes=config.get("num_classes", 1000),
model_params=config.get("model_params"),
weights_path=config.get("weights"),
)
model.to(config.device)
if "train" in config.mode and is_accuracy_aware_training(config):
uncompressed_model_accuracy = model_eval_fn(model)
resuming_checkpoint = None
if resuming_checkpoint_path is not None:
resuming_checkpoint = load_resuming_checkpoint(resuming_checkpoint_path)
model_state_dict, compression_state = extract_model_and_compression_states(resuming_checkpoint)
compression_ctrl, model = create_compressed_model(model, nncf_config, compression_state)
if model_state_dict is not None:
load_state(model, model_state_dict, is_resume=True)
if is_export_only:
export_model(compression_ctrl, config)
return
model, _ = prepare_model_for_execution(model, config)
if config.distributed:
compression_ctrl.distributed()
# define optimizer
params_to_optimize = get_parameter_groups(model, config)
optimizer, lr_scheduler = make_optimizer(params_to_optimize, config)
best_acc1 = 0
# optionally resume from a checkpoint
if resuming_checkpoint_path is not None:
if "train" in config.mode:
config.start_epoch = resuming_checkpoint["epoch"]
best_acc1 = resuming_checkpoint["best_acc1"]
optimizer.load_state_dict(resuming_checkpoint["optimizer"])
logger.info(
"=> loaded checkpoint '{}' (epoch: {}, best_acc1: {:.3f})".format(
resuming_checkpoint_path, resuming_checkpoint["epoch"], best_acc1
)
)
else:
logger.info("=> loaded checkpoint '{}'".format(resuming_checkpoint_path))
log_common_mlflow_params(config)
if config.execution_mode != ExecutionMode.CPU_ONLY:
cudnn.benchmark = True
if is_main_process():
statistics = compression_ctrl.statistics()
logger.info(statistics.to_str())
if "train" in config.mode:
if is_accuracy_aware_training(config):
# validation function that returns the target metric value
def validate_fn(model, epoch):
top1, _, _ = validate(val_loader, model, criterion, config, epoch=epoch)
return top1
# training function that trains the model for one epoch (full training dataset pass)
# it is assumed that all the NNCF-related methods are properly called inside of
# this function (like e.g. the step and epoch_step methods of the compression scheduler)
def train_epoch_fn(compression_ctrl, model, epoch, optimizer, **kwargs):
return train_epoch(
train_loader, model, criterion, train_criterion_fn, optimizer, compression_ctrl, epoch, config
)
# function that initializes optimizers & lr schedulers to start training
def configure_optimizers_fn():
params_to_optimize = get_parameter_groups(model, config)
optimizer, lr_scheduler = make_optimizer(params_to_optimize, config)
return optimizer, lr_scheduler
acc_aware_training_loop = create_accuracy_aware_training_loop(
nncf_config, compression_ctrl, uncompressed_model_accuracy
)
model = acc_aware_training_loop.run(
model,
train_epoch_fn=train_epoch_fn,
validate_fn=validate_fn,
configure_optimizers_fn=configure_optimizers_fn,
tensorboard_writer=config.tb,
log_dir=config.log_dir,
)
logger.info(f"Compressed model statistics:\n{acc_aware_training_loop.statistics.to_str()}")
else:
train(
config,
compression_ctrl,
model,
criterion,
train_criterion_fn,
lr_scheduler,
model_name,
optimizer,
train_loader,
train_sampler,
val_loader,
best_acc1,
)
if "test" in config.mode:
val_model = model
validate(val_loader, val_model, criterion, config)
config.mlflow.end_run()
if "export" in config.mode:
export_model(compression_ctrl, config)
def train(
config,
compression_ctrl,
model,
criterion,
criterion_fn,
lr_scheduler,
model_name,
optimizer,
train_loader,
train_sampler,
val_loader,
best_acc1=0,
):
best_compression_stage = CompressionStage.UNCOMPRESSED
for epoch in range(config.start_epoch, config.epochs):
# update compression scheduler state at the begin of the epoch
compression_ctrl.scheduler.epoch_step()
if config.distributed:
train_sampler.set_epoch(epoch)
# train for one epoch
train_epoch(train_loader, model, criterion, criterion_fn, optimizer, compression_ctrl, epoch, config)
# Learning rate scheduling should be applied after optimizer’s update
lr_scheduler.step(epoch if not isinstance(lr_scheduler, ReduceLROnPlateau) else best_acc1)
# compute compression algo statistics
statistics = compression_ctrl.statistics()
acc1 = best_acc1
if epoch % config.test_every_n_epochs == 0:
# evaluate on validation set
acc1, _, _ = validate(val_loader, model, criterion, config, epoch=epoch)
compression_stage = compression_ctrl.compression_stage()
# remember best acc@1, considering compression stage. If current acc@1 less then the best acc@1, checkpoint
# still can be best if current compression stage is larger than the best one. Compression stages in ascending
# order: UNCOMPRESSED, PARTIALLY_COMPRESSED, FULLY_COMPRESSED.
is_best_by_accuracy = acc1 > best_acc1 and compression_stage == best_compression_stage
is_best = is_best_by_accuracy or compression_stage > best_compression_stage
if is_best:
best_acc1 = acc1
best_compression_stage = max(compression_stage, best_compression_stage)
if is_main_process():
logger.info(statistics.to_str())
if config.metrics_dump is not None:
acc = best_acc1 / 100
write_metrics(acc, config.metrics_dump)
config.mlflow.safe_call("log_metric", "best_acc1", best_acc1)
checkpoint_path = osp.join(config.checkpoint_save_dir, get_run_name(config) + "_last.pth")
checkpoint = {
"epoch": epoch + 1,
"arch": model_name,
MODEL_STATE_ATTR: model.state_dict(),
COMPRESSION_STATE_ATTR: compression_ctrl.get_compression_state(),
"best_acc1": best_acc1,
"acc1": acc1,
"optimizer": optimizer.state_dict(),
}
torch.save(checkpoint, checkpoint_path)
make_additional_checkpoints(checkpoint_path, is_best, epoch + 1, config)
for key, value in prepare_for_tensorboard(statistics).items():
config.mlflow.safe_call("log_metric", "compression/statistics/{0}".format(key), value, epoch)
config.tb.add_scalar("compression/statistics/{0}".format(key), value, len(train_loader) * epoch)
def get_dataset(dataset_config, config, transform, is_train):
if dataset_config == "imagenet":
prefix = "train" if is_train else "val"
return datasets.ImageFolder(osp.join(config.dataset_dir, prefix), transform)
# For testing purposes
num_images = config.get("num_mock_images", 1000)
if dataset_config == "mock_32x32":
return MockDataset(img_size=(32, 32), transform=transform, num_images=num_images)
if dataset_config == "mock_299x299":
return MockDataset(img_size=(299, 299), transform=transform, num_images=num_images)
return create_cifar(config, dataset_config, is_train, transform)
def create_cifar(config, dataset_config, is_train, transform):
create_cifar_fn = None
if dataset_config in ["cifar100", "cifar100_224x224"]:
create_cifar_fn = partial(CIFAR100, config.dataset_dir, train=is_train, transform=transform)
if dataset_config == "cifar10":
create_cifar_fn = partial(CIFAR10, config.dataset_dir, train=is_train, transform=transform)
if create_cifar_fn:
return safe_thread_call(partial(create_cifar_fn, download=True), partial(create_cifar_fn, download=False))
return None
def create_datasets(config):
dataset_config = config.dataset if config.dataset is not None else "imagenet"
dataset_config = dataset_config.lower()
assert dataset_config in [
"imagenet",
"cifar100",
"cifar10",
"cifar100_224x224",
"mock_32x32",
"mock_299x299",
], "Unknown dataset option"
if dataset_config == "imagenet":
normalize = transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
elif dataset_config in ["cifar100", "cifar100_224x224"]:
normalize = transforms.Normalize(mean=(0.5071, 0.4865, 0.4409), std=(0.2673, 0.2564, 0.2761))
elif dataset_config == "cifar10":
normalize = transforms.Normalize(mean=(0.4914, 0.4822, 0.4465), std=(0.2471, 0.2435, 0.2616))
elif dataset_config in ["mock_32x32", "mock_299x299"]:
normalize = transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
input_info = FillerInputInfo.from_nncf_config(config)
image_size = input_info.elements[0].shape[-1]
size = int(image_size / 0.875)
if dataset_config in ["cifar10", "cifar100_224x224", "cifar100"]:
list_val_transforms = [transforms.ToTensor(), normalize]
if dataset_config == "cifar100_224x224":
list_val_transforms.insert(0, transforms.Resize(image_size))
val_transform = transforms.Compose(list_val_transforms)
list_train_transforms = [
transforms.RandomCrop(image_size, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
if dataset_config == "cifar100_224x224":
list_train_transforms.insert(0, transforms.Resize(image_size))
train_transforms = transforms.Compose(list_train_transforms)
elif dataset_config in ["mock_32x32", "mock_299x299"]:
val_transform = transforms.Compose(
[
transforms.Resize(size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
normalize,
]
)
train_transforms = transforms.Compose(
[
transforms.Resize(size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
normalize,
]
)
else:
val_transform = transforms.Compose(
[
transforms.Resize(size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
normalize,
]
)
train_transforms = transforms.Compose(
[
transforms.RandomResizedCrop(image_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
)
val_dataset = get_dataset(dataset_config, config, val_transform, is_train=False)
train_dataset = get_dataset(dataset_config, config, train_transforms, is_train=True)
return train_dataset, val_dataset
def create_data_loaders(config, train_dataset, val_dataset):
pin_memory = config.execution_mode != ExecutionMode.CPU_ONLY
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
batch_size = int(config.batch_size)
workers = int(config.workers)
batch_size_val = int(config.batch_size_val) if config.batch_size_val is not None else int(config.batch_size)
if config.execution_mode == ExecutionMode.MULTIPROCESSING_DISTRIBUTED:
batch_size //= config.ngpus_per_node
batch_size_val //= config.ngpus_per_node
workers //= config.ngpus_per_node
val_sampler = torch.utils.data.SequentialSampler(val_dataset)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size_val,
shuffle=False,
num_workers=workers,
pin_memory=pin_memory,
sampler=val_sampler,
drop_last=False,
)
train_sampler = None
if config.distributed:
sampler_seed = 0 if config.seed is None else config.seed
dist_sampler_shuffle = config.seed is None
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, seed=sampler_seed, shuffle=dist_sampler_shuffle
)
train_shuffle = train_sampler is None and config.seed is None
def create_train_data_loader(batch_size_):
return torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size_,
shuffle=train_shuffle,
num_workers=workers,
pin_memory=pin_memory,
sampler=train_sampler,
drop_last=True,
)
train_loader = create_train_data_loader(batch_size)
if config.batch_size_init:
init_loader = create_train_data_loader(config.batch_size_init)
else:
init_loader = deepcopy(train_loader)
return train_loader, train_sampler, val_loader, init_loader
def train_epoch(
train_loader,
model,
criterion,
criterion_fn,
optimizer,
compression_ctrl,
epoch,
config,
train_iters=None,
log_training_info=True,
):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
compression_losses = AverageMeter()
criterion_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
if train_iters is None:
train_iters = len(train_loader)
compression_scheduler = compression_ctrl.scheduler
casting = autocast if config.mixed_precision else NullContextManager
# switch to train mode
model.train()
end = time.time()
for i, (input_, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
compression_scheduler.step()
input_ = input_.to(config.device)
target = target.to(config.device)
# compute output
with casting():
output = model(input_)
criterion_loss = criterion_fn(output, target, criterion)
# compute compression loss
compression_loss = compression_ctrl.loss()
loss = criterion_loss + compression_loss
if isinstance(output, InceptionOutputs):
output = output.logits
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input_.size(0))
comp_loss_val = compression_loss.item() if isinstance(compression_loss, torch.Tensor) else compression_loss
compression_losses.update(comp_loss_val, input_.size(0))
criterion_losses.update(criterion_loss.item(), input_.size(0))
top1.update(acc1, input_.size(0))
top5.update(acc5, input_.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % config.print_freq == 0 and log_training_info:
logger.info(
"{rank}: "
"Epoch: [{0}][{1}/{2}] "
"Lr: {3:.3} "
"Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) "
"Data: {data_time.val:.3f} ({data_time.avg:.3f}) "
"CE_loss: {ce_loss.val:.4f} ({ce_loss.avg:.4f}) "
"CR_loss: {cr_loss.val:.4f} ({cr_loss.avg:.4f}) "
"Loss: {loss.val:.4f} ({loss.avg:.4f}) "
"Acc@1: {top1.val:.3f} ({top1.avg:.3f}) "
"Acc@5: {top5.val:.3f} ({top5.avg:.3f})".format(
epoch,
i,
len(train_loader),
get_lr(optimizer),
batch_time=batch_time,
data_time=data_time,
ce_loss=criterion_losses,
cr_loss=compression_losses,
loss=losses,
top1=top1,
top5=top5,
rank="{}:".format(config.rank) if config.multiprocessing_distributed else "",
)
)
if is_main_process() and log_training_info:
global_step = train_iters * epoch
config.tb.add_scalar("train/learning_rate", get_lr(optimizer), i + global_step)
config.tb.add_scalar("train/criterion_loss", criterion_losses.val, i + global_step)
config.tb.add_scalar("train/compression_loss", compression_losses.val, i + global_step)
config.tb.add_scalar("train/loss", losses.val, i + global_step)
config.tb.add_scalar("train/top1", top1.val, i + global_step)
config.tb.add_scalar("train/top5", top5.val, i + global_step)
statistics = compression_ctrl.statistics(quickly_collected_only=True)
for stat_name, stat_value in prepare_for_tensorboard(statistics).items():
config.tb.add_scalar("train/statistics/{}".format(stat_name), stat_value, i + global_step)
if i >= train_iters:
break
def validate(val_loader, model, criterion, config, epoch=0, log_validation_info=True):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
casting = autocast if config.mixed_precision else NullContextManager
with torch.no_grad():
end = time.time()
for i, (input_, target) in enumerate(val_loader):
input_ = input_.to(config.device)
target = target.to(config.device)
# compute output
with casting():
output = model(input_)
loss = default_criterion_fn(output, target, criterion)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input_.size(0))
top1.update(acc1, input_.size(0))
top5.update(acc5, input_.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % config.print_freq == 0 and log_validation_info:
logger.info(
"{rank}"
"Test: [{0}/{1}] "
"Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) "
"Loss: {loss.val:.4f} ({loss.avg:.4f}) "
"Acc@1: {top1.val:.3f} ({top1.avg:.3f}) "
"Acc@5: {top5.val:.3f} ({top5.avg:.3f})".format(
i,
len(val_loader),
batch_time=batch_time,
loss=losses,
top1=top1,
top5=top5,
rank="{}:".format(config.rank) if config.multiprocessing_distributed else "",
)
)
if is_main_process() and log_validation_info:
config.tb.add_scalar("val/loss", losses.avg, len(val_loader) * epoch)
config.tb.add_scalar("val/top1", top1.avg, len(val_loader) * epoch)
config.tb.add_scalar("val/top5", top5.avg, len(val_loader) * epoch)
config.mlflow.safe_call("log_metric", "val/loss", float(losses.avg), epoch)
config.mlflow.safe_call("log_metric", "val/top1", float(top1.avg), epoch)
config.mlflow.safe_call("log_metric", "val/top5", float(top5.avg), epoch)
logger.info(" * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}\n".format(top1=top1, top5=top5))
if is_main_process() and config.metrics_dump is not None:
acc = top1.avg / 100
write_metrics(acc, config.metrics_dump)
return top1.avg, top5.avg, losses.avg
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self):
self.val = None
self.avg = None
self.sum = None
self.count = None
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).sum(0, keepdim=True)
res.append(correct_k.float().mul_(100.0 / batch_size).item())
return res
def get_lr(optimizer):
return optimizer.param_groups[0]["lr"]
if __name__ == "__main__":
main(sys.argv[1:])