-
Notifications
You must be signed in to change notification settings - Fork 249
/
Copy pathmeta_modules.py
154 lines (123 loc) · 6.37 KB
/
meta_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
'''Modules for hypernetwork experiments, Paper Sec. 4.4
'''
import torch
from torch import nn
from collections import OrderedDict
import modules
class HyperNetwork(nn.Module):
def __init__(self, hyper_in_features, hyper_hidden_layers, hyper_hidden_features, hypo_module):
'''
Args:
hyper_in_features: In features of hypernetwork
hyper_hidden_layers: Number of hidden layers in hypernetwork
hyper_hidden_features: Number of hidden units in hypernetwork
hypo_module: MetaModule. The module whose parameters are predicted.
'''
super().__init__()
hypo_parameters = hypo_module.meta_named_parameters()
self.names = []
self.nets = nn.ModuleList()
self.param_shapes = []
for name, param in hypo_parameters:
self.names.append(name)
self.param_shapes.append(param.size())
hn = modules.FCBlock(in_features=hyper_in_features, out_features=int(torch.prod(torch.tensor(param.size()))),
num_hidden_layers=hyper_hidden_layers, hidden_features=hyper_hidden_features,
outermost_linear=True, nonlinearity='relu')
self.nets.append(hn)
if 'weight' in name:
self.nets[-1].net[-1].apply(lambda m: hyper_weight_init(m, param.size()[-1]))
elif 'bias' in name:
self.nets[-1].net[-1].apply(lambda m: hyper_bias_init(m))
def forward(self, z):
'''
Args:
z: Embedding. Input to hypernetwork. Could be output of "Autodecoder" (see above)
Returns:
params: OrderedDict. Can be directly passed as the "params" parameter of a MetaModule.
'''
params = OrderedDict()
for name, net, param_shape in zip(self.names, self.nets, self.param_shapes):
batch_param_shape = (-1,) + param_shape
params[name] = net(z).reshape(batch_param_shape)
return params
class NeuralProcessImplicit2DHypernet(nn.Module):
'''A canonical 2D representation hypernetwork mapping 2D coords to out_features.'''
def __init__(self, in_features, out_features, image_resolution=None, encoder_nl='sine'):
super().__init__()
latent_dim = 256
self.hypo_net = modules.SingleBVPNet(out_features=out_features, type='sine', sidelength=image_resolution,
in_features=2)
self.hyper_net = HyperNetwork(hyper_in_features=latent_dim, hyper_hidden_layers=1, hyper_hidden_features=256,
hypo_module=self.hypo_net)
self.set_encoder = modules.SetEncoder(in_features=in_features, out_features=latent_dim, num_hidden_layers=2,
hidden_features=latent_dim, nonlinearity=encoder_nl)
print(self)
def freeze_hypernet(self):
for param in self.hyper_net.parameters():
param.requires_grad = False
def get_hypo_net_weights(self, model_input):
pixels, coords = model_input['img_sub'], model_input['coords_sub']
ctxt_mask = model_input.get('ctxt_mask', None)
embedding = self.set_encoder(coords, pixels, ctxt_mask=ctxt_mask)
hypo_params = self.hyper_net(embedding)
return hypo_params, embedding
def forward(self, model_input):
if model_input.get('embedding', None) is None:
pixels, coords = model_input['img_sub'], model_input['coords_sub']
ctxt_mask = model_input.get('ctxt_mask', None)
embedding = self.set_encoder(coords, pixels, ctxt_mask=ctxt_mask)
else:
embedding = model_input['embedding']
hypo_params = self.hyper_net(embedding)
model_output = self.hypo_net(model_input, params=hypo_params)
return {'model_in':model_output['model_in'], 'model_out':model_output['model_out'], 'latent_vec':embedding,
'hypo_params':hypo_params}
class ConvolutionalNeuralProcessImplicit2DHypernet(nn.Module):
def __init__(self, in_features, out_features, image_resolution=None, partial_conv=False):
super().__init__()
latent_dim = 256
if partial_conv:
self.encoder = modules.PartialConvImgEncoder(channel=in_features, image_resolution=image_resolution)
else:
self.encoder = modules.ConvImgEncoder(channel=in_features, image_resolution=image_resolution)
self.hypo_net = modules.SingleBVPNet(out_features=out_features, type='sine', sidelength=image_resolution,
in_features=2)
self.hyper_net = HyperNetwork(hyper_in_features=latent_dim, hyper_hidden_layers=1, hyper_hidden_features=256,
hypo_module=self.hypo_net)
print(self)
def forward(self, model_input):
if model_input.get('embedding', None) is None:
embedding = self.encoder(model_input['img_sparse'])
else:
embedding = model_input['embedding']
hypo_params = self.hyper_net(embedding)
model_output = self.hypo_net(model_input, params=hypo_params)
return {'model_in': model_output['model_in'], 'model_out': model_output['model_out'], 'latent_vec': embedding,
'hypo_params': hypo_params}
def get_hypo_net_weights(self, model_input):
embedding = self.encoder(model_input['img_sparse'])
hypo_params = self.hyper_net(embedding)
return hypo_params, embedding
def freeze_hypernet(self):
for param in self.hyper_net.parameters():
param.requires_grad = False
for param in self.encoder.parameters():
param.requires_grad = False
############################
# Initialization schemes
def hyper_weight_init(m, in_features_main_net):
if hasattr(m, 'weight'):
nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity='relu', mode='fan_in')
m.weight.data = m.weight.data / 1.e2
if hasattr(m, 'bias'):
with torch.no_grad():
m.bias.uniform_(-1/in_features_main_net, 1/in_features_main_net)
def hyper_bias_init(m):
if hasattr(m, 'weight'):
nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity='relu', mode='fan_in')
m.weight.data = m.weight.data / 1.e2
if hasattr(m, 'bias'):
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight)
with torch.no_grad():
m.bias.uniform_(-1/fan_in, 1/fan_in)