forked from celestiaorg/nmt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nmt_test.go
1157 lines (1076 loc) · 39.7 KB
/
nmt_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package nmt
import (
"bytes"
"crypto"
"crypto/sha256"
"encoding/binary"
"errors"
"fmt"
"math"
"math/rand"
"reflect"
"sort"
"sync"
"testing"
"github.com/stretchr/testify/require"
"github.com/celestiaorg/nmt/namespace"
"github.com/stretchr/testify/assert"
)
// prefixedData8 like namespace.PrefixedData is just a slice of bytes. It
// assumes that the slice it represents is at least 8 bytes. This assumption is
// not enforced by the type system though.
type prefixedData8 []byte
func (d prefixedData8) NamespaceID() namespace.ID {
return namespace.ID(d[:8])
}
func (d prefixedData8) Data() []byte {
return d[8:]
}
type namespaceDataPair struct {
ID namespace.ID
Data []byte
}
func newNamespaceDataPair(id namespace.ID, data []byte) namespaceDataPair {
return namespaceDataPair{
ID: id,
Data: data,
}
}
func newNamespaceDataPairRaw(nidSize int, data []byte) namespaceDataPair {
return namespaceDataPair{
ID: data[:nidSize],
Data: data[nidSize:],
}
}
func ExampleNamespacedMerkleTree() {
// the tree will use this namespace size
nidSize := 1
// the leaves that will be pushed
data := [][]byte{
append(namespace.ID{0}, []byte("leaf_0")...),
append(namespace.ID{0}, []byte("leaf_1")...),
append(namespace.ID{1}, []byte("leaf_2")...),
append(namespace.ID{1}, []byte("leaf_3")...),
}
// Init a tree with the namespace size as well as
// the underlying hash function:
tree := New(sha256.New(), NamespaceIDSize(nidSize))
for _, d := range data {
if err := tree.Push(d); err != nil {
panic(fmt.Sprintf("unexpected error: %v", err))
}
}
// compute the root
root, err := tree.Root()
if err != nil {
panic("unexpected error")
}
// the root's min/max namespace is the min and max namespace of all leaves:
minNS := MinNamespace(root, tree.NamespaceSize())
maxNS := MaxNamespace(root, tree.NamespaceSize())
if bytes.Equal(minNS, namespace.ID{0}) {
fmt.Printf("Min namespace: %x\n", minNS)
}
if bytes.Equal(maxNS, namespace.ID{1}) {
fmt.Printf("Max namespace: %x\n", maxNS)
}
// compute proof for namespace 0:
proof, err := tree.ProveNamespace(namespace.ID{0})
if err != nil {
panic("unexpected error")
}
// verify proof using the root and the leaves of namespace 0:
leafs := [][]byte{
append(namespace.ID{0}, []byte("leaf_0")...),
append(namespace.ID{0}, []byte("leaf_1")...),
}
if proof.VerifyNamespace(sha256.New(), namespace.ID{0}, leafs, root) {
fmt.Printf("Successfully verified namespace: %x\n", namespace.ID{0})
}
if proof.VerifyNamespace(sha256.New(), namespace.ID{2}, leafs, root) {
panic(fmt.Sprintf("Proof for namespace %x, passed for namespace: %x\n", namespace.ID{0}, namespace.ID{2}))
}
// Output:
// Min namespace: 00
// Max namespace: 01
// Successfully verified namespace: 00
}
func TestNamespacedMerkleTree_Push(t *testing.T) {
tests := []struct {
name string
data namespace.PrefixedData
wantErr bool
}{
{"1st push: always OK", append([]byte{0, 0, 0}, []byte("dummy data")...), false},
{"push with same namespace: OK", append([]byte{0, 0, 0}, []byte("dummy data")...), false},
{"push with greater namespace: OK", append([]byte{0, 0, 1}, []byte("dummy data")...), false},
{"push with smaller namespace: Err", append([]byte{0, 0, 0}, []byte("dummy data")...), true},
{"push with same namespace: Ok", append([]byte{0, 0, 1}, []byte("dummy data")...), false},
{"push with greater namespace: Ok", append([]byte{1, 0, 0}, []byte("dummy data")...), false},
{"push with smaller namespace: Err", append([]byte{0, 0, 1}, []byte("dummy data")...), true},
{"push with smaller namespace: Err", append([]byte{0, 0, 0}, []byte("dummy data")...), true},
{"push with smaller namespace: Err", append([]byte{0, 1, 0}, []byte("dummy data")...), true},
{"push with same as last namespace: OK", append([]byte{1, 0, 0}, []byte("dummy data")...), false},
{"push with greater as last namespace: OK", append([]byte{1, 1, 0}, []byte("dummy data")...), false},
// This will error, as the NMT will treat the first bytes as the namespace. If the passed data is
// too short though, it can't extract the namespace and hence will complain:
{"push with wrong namespace size: Err", []byte{1, 1}, true},
}
n := New(sha256.New(), NamespaceIDSize(3))
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if err := n.Push(tt.data); (err != nil) != tt.wantErr {
t.Errorf("Push() error = %v, wantErr %v", err, tt.wantErr)
}
})
}
}
func TestNamespacedMerkleTreeRoot(t *testing.T) {
// does some sanity checks on root computation
zeroNs := []byte{0, 0, 0}
onesNS := []byte{1, 1, 1}
leafData := []byte("leaf1")
zeroLeafHash := sum(crypto.SHA256, []byte{LeafPrefix}, zeroNs, leafData)
oneLeafHash := sum(crypto.SHA256, []byte{LeafPrefix}, onesNS, leafData)
zeroFlaggedLeaf := append(append(zeroNs, zeroNs...), zeroLeafHash...)
oneFlaggedLeaf := append(append(onesNS, onesNS...), oneLeafHash...)
twoZeroLeafsRoot := sum(crypto.SHA256, []byte{NodePrefix}, zeroFlaggedLeaf, zeroFlaggedLeaf)
diffNSLeafsRoot := sum(crypto.SHA256, []byte{NodePrefix}, zeroFlaggedLeaf, oneFlaggedLeaf)
emptyRoot := crypto.SHA256.New().Sum(nil)
tests := []struct {
name string
nidLen int
pushedData []namespaceDataPair
wantRoot []byte
}{
// default empty root according to base case:
// https://github.com/celestiaorg/celestiaorg-specs/blob/master/specs/data_structures.md#namespace-merkle-tree
{"Empty", 3, nil, appendAll(zeroNs, zeroNs, emptyRoot)},
{"One leaf", 3, []namespaceDataPair{newNamespaceDataPair(zeroNs, leafData)}, appendAll(zeroNs, zeroNs, sum(crypto.SHA256, []byte{LeafPrefix}, zeroNs, leafData))},
{"Two leaves", 3, []namespaceDataPair{newNamespaceDataPair(zeroNs, leafData), newNamespaceDataPair(zeroNs, leafData)}, appendAll(zeroNs, zeroNs, twoZeroLeafsRoot)},
{"Two leaves diff namespaces", 3, []namespaceDataPair{newNamespaceDataPair(zeroNs, leafData), newNamespaceDataPair(onesNS, leafData)}, appendAll(zeroNs, onesNS, diffNSLeafsRoot)},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
n := New(sha256.New(), NamespaceIDSize(tt.nidLen))
for _, d := range tt.pushedData {
if err := n.Push(namespace.PrefixedData(append(d.ID, d.Data...))); err != nil {
t.Errorf("Push() error = %v, expected no error", err)
}
}
gotRoot, err := n.Root()
require.NoError(t, err)
if !reflect.DeepEqual(gotRoot, tt.wantRoot) {
t.Errorf("Root() gotRoot = %v, want %v", gotRoot, tt.wantRoot)
}
})
}
}
func appendAll(slices ...[]byte) []byte {
totalLen := 0
for _, slice := range slices {
totalLen += len(slice)
}
out := make([]byte, 0, totalLen)
for _, slice := range slices {
out = append(out, slice...)
}
return out
}
func TestNamespacedMerkleTree_ProveNamespace_Ranges_And_Verify(t *testing.T) {
tests := []struct {
name string
nidLen int
pushData []namespaceDataPair
proveNID namespace.ID
wantProofStart int
wantProofEnd int
wantFound bool
}{
{
"found", 1,
generateLeafData(1, 0, 1, []byte("_data")),
[]byte{0},
0, 1,
true,
},
{
"not found", 1,
generateLeafData(1, 0, 1, []byte("_data")),
[]byte{1},
0, 0,
false,
},
{
"two leaves and found", 1,
append(generateLeafData(1, 0, 1, []byte("_data")), generateLeafData(1, 1, 2, []byte("_data"))...),
[]byte{1},
1, 2,
true,
},
{
"two leaves and found2", 1,
repeat(generateLeafData(1, 0, 1, []byte("_data")), 2),
[]byte{1},
0, 0, false,
},
{
"three leaves and found", 1,
append(repeat(generateLeafData(1, 0, 1, []byte("_data")), 2), generateLeafData(1, 1, 2, []byte("_data"))...),
[]byte{1},
2, 3,
true,
},
{
"three leaves and not found but with range", 2,
append(repeat(generateLeafData(2, 0, 1, []byte("_data")), 2), newNamespaceDataPair([]byte{1, 1}, []byte("_data"))),
[]byte{0, 1},
2, 3,
false,
},
{
"5 leaves and not found but within range", 2,
append(generateLeafData(2, 0, 4, []byte("_data")), newNamespaceDataPair([]byte{1, 1}, []byte("_data"))),
[]byte{1, 0},
4, 5,
false,
},
// In the cases (nID < minNID) or (maxNID < nID) we do not generate any proof
// and the (minNS, maxNs, root) should be indication enough that nID is not in that range.
{
"4 leaves, not found and nID < minNID", 2,
[]namespaceDataPair{newNamespaceDataPairRaw(2, []byte("01_data")), newNamespaceDataPairRaw(2, []byte("01_data")), newNamespaceDataPairRaw(2, []byte("01_data")), newNamespaceDataPairRaw(2, []byte("11_data"))},
[]byte("00"),
0, 0,
false,
},
{
"4 leaves, not found and nID > maxNID ", 2,
[]namespaceDataPair{newNamespaceDataPairRaw(2, []byte("00_data")), newNamespaceDataPairRaw(2, []byte("00_data")), newNamespaceDataPairRaw(2, []byte("01_data")), newNamespaceDataPairRaw(2, []byte("01_data"))},
[]byte("11"),
0, 0,
false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
n := New(sha256.New(), NamespaceIDSize(tt.nidLen))
for _, d := range tt.pushData {
err := n.Push(namespace.PrefixedData(append(d.ID, d.Data...)))
if err != nil {
t.Fatalf("invalid test case: %v, error on Push(): %v", tt.name, err)
}
}
gotProof, err := n.ProveNamespace(tt.proveNID)
if err != nil {
t.Fatalf("ProveNamespace() unexpected error: %v", err)
}
if gotProof.Start() != tt.wantProofStart {
t.Errorf("ProveNamespace() gotProofStart = %v, want %v", gotProof.Start(), tt.wantProofStart)
}
if gotProof.End() != tt.wantProofEnd {
t.Errorf("ProveNamespace() gotProofEnd = %v, want %v", gotProof.End(), tt.wantProofEnd)
}
gotFound := gotProof.IsNonEmptyRange() && len(gotProof.LeafHash()) == 0
if gotFound != tt.wantFound {
t.Errorf("Proof.ProveNamespace() gotFound = %v, wantFound = %v ", gotFound, tt.wantFound)
}
if gotFound && len(tt.pushData) > 1 && len(gotProof.Nodes()) == 0 {
t.Errorf("Proof.Nodes() returned empty array, want: len(gotProof.Nodes()) > 0, gotProof: %v", gotProof)
}
// Verification round-trip should always pass:
gotGetLeaves := n.Get(tt.proveNID)
r, err := n.Root()
require.NoError(t, err)
gotChecksOut := gotProof.VerifyNamespace(sha256.New(), tt.proveNID, gotGetLeaves, r)
if !gotChecksOut {
t.Errorf("Proof.VerifyNamespace() gotChecksOut: %v, want: true", gotChecksOut)
}
// VerifyInclusion for each pushed leaf should always pass:
if !gotProof.IsOfAbsence() && tt.wantFound {
for idx, data := range tt.pushData {
gotSingleProof, err := n.Prove(idx)
if err != nil {
t.Fatalf("unexpected error on Prove(): %v", err)
}
r, err := n.Root()
require.NoError(t, err)
gotChecksOut := gotSingleProof.VerifyInclusion(sha256.New(), data.ID, [][]byte{data.Data}, r)
if !gotChecksOut {
t.Errorf("Proof.VerifyInclusion() gotChecksOut: %v, want: true", gotChecksOut)
}
}
}
// GetWithProof equiv. to Get and ProveNamespace
gotGetWithProoftLeaves, gotGetProof, err := n.GetWithProof(tt.proveNID)
if err != nil {
t.Fatalf("GetWithProof() unexpected error: %v", err)
}
if !reflect.DeepEqual(gotGetProof, gotProof) {
t.Fatalf("GetWithProof() got Proof %v, want: %v", gotGetProof, gotProof)
}
if !reflect.DeepEqual(gotGetWithProoftLeaves, gotGetLeaves) {
t.Fatalf("GetWithProof() got data: %v, want: %v", gotGetLeaves, tt.pushData)
}
})
}
}
func TestIgnoreMaxNamespace(t *testing.T) {
var (
hash = sha256.New()
nidSize = 8
minNID = []byte{0, 0, 0, 0, 0, 0, 0, 0}
secondNID = []byte{0, 0, 0, 0, 0, 0, 0, 1}
thirdNID = []byte{0, 0, 0, 0, 0, 0, 0, 2}
maxNID = []byte{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}
)
tests := []struct {
name string
ignoreMaxNamespace bool
pushData []prefixedData8
wantRootMaxNID namespace.ID
}{
{
"single leaf with MaxNID (ignored)",
true,
[]prefixedData8{prefixedData8(append(maxNID, []byte("leaf_1")...))},
maxNID,
},
{
"single leaf with MaxNID (not ignored)",
false,
[]prefixedData8{prefixedData8(append(maxNID, []byte("leaf_1")...))},
maxNID,
},
{
"two leaves, one with MaxNID (ignored)",
true,
[]prefixedData8{
prefixedData8(append(secondNID, []byte("leaf_1")...)),
prefixedData8(append(maxNID, []byte("leaf_2")...)),
},
secondNID,
},
{
"two leaves, one with MaxNID (not ignored)",
false,
[]prefixedData8{
prefixedData8(append(secondNID, []byte("leaf_1")...)),
prefixedData8(append(maxNID, []byte("leaf_2")...)),
},
maxNID,
},
{
"two leaves with MaxNID (ignored)",
true,
[]prefixedData8{
prefixedData8(append(maxNID, []byte("leaf_1")...)),
prefixedData8(append(maxNID, []byte("leaf_2")...)),
},
maxNID,
},
{
"two leaves with MaxNID (not ignored)",
false,
[]prefixedData8{
prefixedData8(append(maxNID, []byte("leaf_1")...)),
prefixedData8(append(maxNID, []byte("leaf_2")...)),
},
maxNID,
},
{
"two leaves, none with MaxNID (ignored)",
true,
[]prefixedData8{
prefixedData8(append(minNID, []byte("leaf_1")...)),
prefixedData8(append(secondNID, []byte("leaf_2")...)),
},
secondNID,
},
{
"two leaves, none with MaxNID (not ignored)",
false,
[]prefixedData8{
prefixedData8(append(minNID, []byte("leaf_1")...)),
prefixedData8(append(secondNID, []byte("leaf_2")...)),
},
secondNID,
},
{
"three leaves, one with MaxNID (ignored)",
true,
[]prefixedData8{
prefixedData8(append(minNID, []byte("leaf_1")...)),
prefixedData8(append(secondNID, []byte("leaf_2")...)),
prefixedData8(append(maxNID, []byte("leaf_2")...)),
},
secondNID,
},
{
"three leaves, one with MaxNID (not ignored)",
false,
[]prefixedData8{
prefixedData8(append(minNID, []byte("leaf_1")...)),
prefixedData8(append(secondNID, []byte("leaf_2")...)),
prefixedData8(append(maxNID, []byte("leaf_2")...)),
},
maxNID,
},
{
"4 leaves, none maxNID (ignored)", true,
[]prefixedData8{
prefixedData8(append(minNID, []byte("leaf_1")...)),
prefixedData8(append(minNID, []byte("leaf_2")...)),
prefixedData8(append(secondNID, []byte("leaf_3")...)),
prefixedData8(append(thirdNID, []byte("leaf_4")...)),
},
thirdNID,
},
{
"4 leaves, half maxNID (ignored)",
true,
[]prefixedData8{
prefixedData8(append(minNID, []byte("leaf_1")...)),
prefixedData8(append(secondNID, []byte("leaf_2")...)),
prefixedData8(append(maxNID, []byte("leaf_3")...)),
prefixedData8(append(maxNID, []byte("leaf_4")...)),
},
secondNID,
},
{
"4 leaves, half maxNID (not ignored)",
false,
[]prefixedData8{
prefixedData8(append(minNID, []byte("leaf_1")...)),
prefixedData8(append(secondNID, []byte("leaf_2")...)),
prefixedData8(append(maxNID, []byte("leaf_3")...)),
prefixedData8(append(maxNID, []byte("leaf_4")...)),
},
maxNID,
},
{
"8 leaves, 4 maxNID (ignored)",
true,
[]prefixedData8{
prefixedData8(append(minNID, []byte("leaf_1")...)),
prefixedData8(append(secondNID, []byte("leaf_2")...)),
prefixedData8(append(thirdNID, []byte("leaf_3")...)),
prefixedData8(append(thirdNID, []byte("leaf_4")...)),
prefixedData8(append(maxNID, []byte("leaf_5")...)),
prefixedData8(append(maxNID, []byte("leaf_6")...)),
prefixedData8(append(maxNID, []byte("leaf_7")...)),
prefixedData8(append(maxNID, []byte("leaf_8")...)),
},
thirdNID,
},
}
for i, tc := range tests {
t.Run(tc.name, func(t *testing.T) {
tree := New(hash, NamespaceIDSize(nidSize), IgnoreMaxNamespace(tc.ignoreMaxNamespace))
for _, d := range tc.pushData {
if err := tree.Push(namespace.PrefixedData(d)); err != nil {
panic("unexpected error")
}
}
r, err := tree.Root()
require.NoError(t, err)
gotRootMaxNID := r[tree.NamespaceSize() : tree.NamespaceSize()*2]
if !bytes.Equal(tc.wantRootMaxNID, gotRootMaxNID) {
t.Fatalf("Case: %v, '%v', root.Max() got: %x, want: %x", i, tc.name, gotRootMaxNID, tc.wantRootMaxNID)
}
for idx, d := range tc.pushData {
proof, err := tree.ProveNamespace(d.NamespaceID())
if err != nil {
t.Fatalf("ProveNamespace() unexpected error: %v", err)
}
if gotIgnored := proof.IsMaxNamespaceIDIgnored(); gotIgnored != tc.ignoreMaxNamespace {
t.Fatalf("Proof.IsMaxNamespaceIDIgnored() got: %v, want: %v", gotIgnored, tc.ignoreMaxNamespace)
}
var leaves [][]byte
if !proof.IsEmptyProof() {
leaves = tree.Get(d.NamespaceID())
}
r, err := tree.Root()
require.NoError(t, err)
if !proof.VerifyNamespace(hash, d.NamespaceID(), leaves, r) {
t.Errorf("VerifyNamespace() failed on ID: %x", d.NamespaceID())
}
singleProof, err := tree.Prove(idx)
if err != nil {
t.Fatalf("ProveNamespace() unexpected error: %v", err)
}
r, err = tree.Root()
require.NoError(t, err)
if !singleProof.VerifyInclusion(hash, d.NamespaceID(), [][]byte{d.Data()}, r) {
t.Errorf("VerifyInclusion() failed on leaves: %#v with index: %v", d, idx)
}
if gotIgnored := singleProof.IsMaxNamespaceIDIgnored(); gotIgnored != tc.ignoreMaxNamespace {
t.Fatalf("Proof.IsMaxNamespaceIDIgnored() got: %v, want: %v", gotIgnored, tc.ignoreMaxNamespace)
}
}
})
}
}
func TestNodeVisitor(t *testing.T) {
const (
numLeaves = 4
nidSize = 2
leafSize = 6
)
nodeHashes := make([][]byte, 0)
collectNodeHashes := func(hash []byte, _children ...[]byte) {
nodeHashes = append(nodeHashes, hash)
}
data := generateRandNamespacedRawData(numLeaves, nidSize, leafSize)
n := New(sha256.New(), NamespaceIDSize(nidSize), NodeVisitor(collectNodeHashes))
for j := 0; j < numLeaves; j++ {
if err := n.Push(data[j]); err != nil {
t.Errorf("err: %v", err)
}
}
root, err := n.Root()
require.NoError(t, err)
last := nodeHashes[len(nodeHashes)-1]
if !bytes.Equal(root, last) {
t.Fatalf("last visited node's digest does not match the tree root's.")
}
t.Log("printing nodes in visiting order") // postorder DFS
for _, nodeHash := range nodeHashes {
t.Logf("|min: %x, max: %x, digest: %x...|\n", nodeHash[:nidSize], nodeHash[nidSize:nidSize*2], nodeHash[nidSize*2:nidSize*2+3])
}
}
func TestNamespacedMerkleTree_ProveErrors(t *testing.T) {
tests := []struct {
name string
nidLen int
index int
pushData []namespaceDataPair
wantErr bool
}{
{"negative index", 1, -1, generateLeafData(1, 0, 10, []byte("_data")), true},
{"too large index", 1, 11, generateLeafData(1, 0, 10, []byte("_data")), true},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
n := New(sha256.New(), NamespaceIDSize(tt.nidLen), InitialCapacity(len(tt.pushData)))
for _, d := range tt.pushData {
err := n.Push(namespace.PrefixedData(append(d.ID, d.Data...)))
if err != nil {
t.Fatalf("invalid test case: %v, error on Push(): %v", tt.name, err)
}
}
for i := range tt.pushData {
_, err := n.Prove(i)
if err != nil {
t.Fatalf("Prove() failed on valid index: %v, err: %v", i, err)
}
}
_, err := n.Prove(tt.index)
if (err != nil) != tt.wantErr {
t.Errorf("Prove() error = %v, wantErr %v", err, tt.wantErr)
return
}
})
}
}
func TestNamespacedMerkleTree_calculateAbsenceIndex_Panic(t *testing.T) {
const nidLen = 2
tests := []struct {
name string
nID namespace.ID
pushData []namespaceDataPair
}{
{"empty tree", []byte{0, 0}, []namespaceDataPair{}},
{"non-empty tree with 2 leaves: ((0,0) == nID < minNID == (0,1))", []byte{0, 0}, generateLeafData(nidLen, 1, 3, []byte{})},
{"non-empty tree with 2 leaves: ((0,3) == nID > maxNID == (0,2))", []byte{0, 3}, generateLeafData(nidLen, 1, 3, []byte{})},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
n := New(sha256.New(), NamespaceIDSize(2))
for _, d := range tt.pushData {
err := n.Push(namespace.PrefixedData(append(d.ID, d.Data...)))
assert.NoError(t, err)
}
shouldPanic(t,
func() { n.calculateAbsenceIndex(tt.nID) })
})
}
}
// This test checks for a regression of https://github.com/celestiaorg/nmt/issues/86
func TestNMT_absenceProofOfZeroNamespace_InEmptyTree(t *testing.T) {
tree := New(sha256.New(), NamespaceIDSize(1))
root, err := tree.Root()
require.NoError(t, err)
emptyleaves, proof, err := tree.GetWithProof(namespace.ID{0})
if err != nil {
t.Fatalf("GetWithProof() could not get namespace{0}. err: %v ", err)
}
if len(emptyleaves) != 0 {
t.Fatalf("Get(namespace.ID{0}) should have returned no leaves but returned %v", emptyleaves)
}
if !proof.VerifyNamespace(sha256.New(), namespace.ID{0}, emptyleaves, root) {
t.Fatalf("Could not verify proof of absence of namespace zero in empty tree")
}
}
// This test checks for a regression of https://github.com/celestiaorg/nmt/issues/86
func TestNMT_forgedNamespaceEmptinessProof(t *testing.T) {
data := [][]byte{
append(namespace.ID{1}, []byte("leaf_0")...),
append(namespace.ID{1}, []byte("leaf_1")...),
append(namespace.ID{2}, []byte("leaf_2")...),
append(namespace.ID{2}, []byte("leaf_3")...),
}
// Init a tree with the namespace size as well as
// the underlying hash function:
tree := New(sha256.New(), NamespaceIDSize(1))
for _, d := range data {
if err := tree.Push(d); err != nil {
panic(fmt.Sprintf("unexpected error: %v", err))
}
}
root, err := tree.Root()
require.NoError(t, err)
actualLeaves := tree.Get(namespace.ID{1})
if len(actualLeaves) == 0 {
t.Fatalf("Get(namespace.ID{1}) should have returned two leaves but returned none.")
}
forgedProof := Proof{
start: 0,
end: 0,
nodes: [][]byte{},
leafHash: []byte{},
isMaxNamespaceIDIgnored: true,
}
forgedProofSuccess := forgedProof.VerifyNamespace(sha256.New(), namespace.ID{1}, [][]byte{}, root)
if forgedProofSuccess {
t.Fatalf("Successfully verified proof that non-empty namespace was empty")
}
}
func TestInvalidOptions(t *testing.T) {
shouldPanic(t, func() {
_ = New(sha256.New(), InitialCapacity(-1))
})
shouldPanic(t, func() {
_ = New(sha256.New(), NamespaceIDSize(-1))
})
shouldPanic(t, func() {
_ = New(sha256.New(), NamespaceIDSize(namespace.IDMaxSize+1))
})
}
func BenchmarkComputeRoot(b *testing.B) {
b.ReportAllocs()
tests := []struct {
name string
numLeaves int
nidSize int
dataSize int
}{
{"64-leaves", 64, 8, 256},
{"128-leaves", 128, 8, 256},
{"256-leaves", 256, 8, 256},
}
for _, tt := range tests {
data := generateRandNamespacedRawData(tt.numLeaves, tt.nidSize, tt.dataSize)
b.ResetTimer()
b.Run(tt.name, func(b *testing.B) {
for i := 0; i < b.N; i++ {
n := New(sha256.New())
for j := 0; j < tt.numLeaves; j++ {
if err := n.Push(data[j]); err != nil {
b.Errorf("err: %v", err)
}
}
_, _ = n.Root()
}
})
}
}
func Test_Root_RaceCondition(t *testing.T) {
// this is very similar to: https://github.com/HuobiRDCenter/huobi_Golang/pull/9
tree := New(sha256.New())
_ = tree.Push([]byte("some data is good enough here"))
numRoutines := 200
wg := sync.WaitGroup{}
wg.Add(numRoutines)
for i := 0; i < numRoutines; i++ {
go func() {
defer func() {
if r := recover(); r != nil {
t.Errorf("race condition: panic %s", r)
}
wg.Done()
}()
_, err := tree.Root()
require.NoError(t, err)
}()
}
wg.Wait()
}
func shouldPanic(t *testing.T, f func()) {
//nolint:errcheck
defer func() { recover() }()
f()
t.Errorf("should have panicked")
}
// generates a consecutive range of leaf data
// starting from namespace zero+nsStartIdx till zero+nsEndIdx-1,
// where zero := 0*nsLen interpreted Uvarint
func generateLeafData(nsLen uint8, nsStartIdx, nsEndIdx int, data []byte) []namespaceDataPair {
if nsEndIdx >= math.MaxUint8*int(nsLen) {
panic(fmt.Sprintf("invalid nsEndIdx: %v, has to be < %v", nsEndIdx, 2<<(nsLen-1)))
}
startNS := bytes.Repeat([]byte{0x0}, int(nsLen))
res := make([]namespaceDataPair, 0, nsEndIdx-nsStartIdx)
for i := nsStartIdx; i < nsEndIdx; i++ {
curNs := append([]byte(nil), startNS...)
curNsUint, err := binary.ReadUvarint(bytes.NewReader(startNS))
if err != nil {
panic(err)
}
curNsUint = curNsUint + uint64(i)
nsUnpadded := make([]byte, 10)
n := binary.PutUvarint(nsUnpadded, curNsUint)
copy(curNs[len(startNS)-n:], nsUnpadded[:n])
res = append(res, newNamespaceDataPair(curNs, data))
}
return res
}
// repeats the given namespace data num times
func repeat(data []namespaceDataPair, num int) []namespaceDataPair {
res := make([]namespaceDataPair, 0, num*len(data))
for i := 0; i < num; i++ {
res = append(res, data...)
}
return res
}
func generateRandNamespacedRawData(total int, nidSize int, leafSize int) [][]byte {
data := make([][]byte, total)
for i := 0; i < total; i++ {
nid := make([]byte, nidSize)
rand.Read(nid)
data[i] = nid
}
sortByteArrays(data)
for i := 0; i < total; i++ {
d := make([]byte, leafSize)
rand.Read(d)
data[i] = append(data[i], d...)
}
return data
}
func sortByteArrays(src [][]byte) {
sort.Slice(src, func(i, j int) bool { return bytes.Compare(src[i], src[j]) < 0 })
}
func TestMinMaxNamespace(t *testing.T) {
type testCase struct {
name string
tree *NamespacedMerkleTree
wantMin namespace.ID
wantMax namespace.ID
}
testCases := []testCase{
{
name: "example tree with four leaves",
tree: exampleNMT(1, true, 0, 0, 1, 3),
wantMin: namespace.ID{0},
wantMax: namespace.ID{3},
},
{
name: "example tree with eight leaves",
tree: exampleNMT(2, true, 1, 2, 3, 4, 5, 6, 7, 8),
wantMin: namespace.ID{1, 1},
wantMax: namespace.ID{8, 8},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
min, err := tc.tree.MinNamespace()
require.NoError(t, err)
assert.Equal(t, tc.wantMin, min)
max, err := tc.tree.MaxNamespace()
require.NoError(t, err)
assert.Equal(t, tc.wantMax, max)
})
}
}
// exampleNMT creates a new NamespacedMerkleTree with the given namespace ID size and leaf namespace IDs. Each byte in the leavesNIDs parameter corresponds to one leaf's namespace ID. If nidSize is greater than 1, the function repeats each NID in leavesNIDs nidSize times before prepending it to the leaf data.
func exampleNMT(nidSize int, ignoreMaxNamespace bool, leavesNIDs ...byte) *NamespacedMerkleTree {
tree := New(sha256.New(), NamespaceIDSize(nidSize), IgnoreMaxNamespace(ignoreMaxNamespace))
for i, nid := range leavesNIDs {
namespace := bytes.Repeat([]byte{nid}, nidSize)
d := append(namespace, []byte(fmt.Sprintf("leaf_%d", i))...)
if err := tree.Push(d); err != nil {
panic(fmt.Sprintf("unexpected error: %v", err))
}
}
return tree
}
func swap(slice [][]byte, i int, j int) {
temp := slice[i]
slice[i] = slice[j]
slice[j] = temp
}
// Test_buildRangeProof_Err tests that buildRangeProof returns an error when the underlying tree has an invalid state e.g., leaves are not ordered by namespace ID or a leaf hash is corrupted.
func Test_buildRangeProof_Err(t *testing.T) {
nIDList := []byte{1, 2, 3, 4, 5, 6, 7, 8}
nIDSize := 2
// create a nmt, 8 leaves namespaced sequentially from 1-8
treeWithCorruptLeafHash := exampleNMT(nIDSize, true, nIDList...)
// corrupt a leaf hash
treeWithCorruptLeafHash.leafHashes[4] = treeWithCorruptLeafHash.leafHashes[4][:treeWithCorruptLeafHash.NamespaceSize()]
// create an NMT with 8 sequentially namespaced leaves, numbered from 1 to 8.
treeWithUnorderedLeafHashes := exampleNMT(nIDSize, true, nIDList...)
// swap the positions of the 4th and 5th leaves
swap(treeWithUnorderedLeafHashes.leaves, 4, 5)
swap(treeWithUnorderedLeafHashes.leafHashes, 4, 5)
validTree := exampleNMT(nIDSize, true, nIDList...)
tests := []struct {
name string
tree *NamespacedMerkleTree
proofStart, proofEnd int
wantErr bool
errType error
}{
{"corrupt leaf hash", treeWithCorruptLeafHash, 4, 5, true, ErrInvalidNodeLen},
{"unordered leaf hashes: the out of order range", treeWithUnorderedLeafHashes, 4, 5, true, ErrUnorderedSiblings},
{"unordered leaf hashes: the first leaf", treeWithUnorderedLeafHashes, 1, 2, true, ErrUnorderedSiblings}, // for a tree with an unordered set of leaves, the buildRangeProof function should produce an error for any input range,
// not just the corrupted range.
{"unordered leaf hashes: the last leaf", treeWithUnorderedLeafHashes, 7, 8, true, ErrUnorderedSiblings}, // for a tree with an unordered set of leaves, the buildRangeProof function should produce an error for any input range,
// not just the corrupted range.
{"invalid proof range: start > end", validTree, 5, 4, true, ErrInvalidRange},
{"invalid proof range: start = end", validTree, 5, 5, true, ErrInvalidRange},
{"invalid proof range: start < 0", validTree, -1, 4, true, ErrInvalidRange},
{"invalid proof range: end > number of leaves", validTree, 0, len(validTree.leaves) + 1, true, ErrInvalidRange},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
_, err := tt.tree.buildRangeProof(tt.proofStart, tt.proofEnd)
assert.Equal(t, tt.wantErr, err != nil)
if tt.wantErr {
assert.True(t, errors.Is(err, tt.errType))
}
})
}
}
// Test_ProveRange_Err tests that ProveRange returns an error when the underlying tree has an invalid state e.g., leaves are not ordered by namespace ID or a leaf hash is corrupted.
func Test_ProveRange_Err(t *testing.T) {
// create an NMT with 8 sequentially namespaced leaves, numbered from 1 to 8.
treeWithCorruptLeafHash := exampleNMT(2, true, 1, 2, 3, 4, 5, 6, 7, 8)
// corrupt a leaf hash
treeWithCorruptLeafHash.leafHashes[4] = treeWithCorruptLeafHash.leafHashes[4][:treeWithCorruptLeafHash.NamespaceSize()]
// create an NMT with 8 sequentially namespaced leaves, numbered from 1 to 8.
treeWithUnorderedLeafHashes := exampleNMT(2, true, 1, 2, 3, 4, 5, 6, 7, 8)
// swap the positions of the 4th and 5th leaves
swap(treeWithUnorderedLeafHashes.leaves, 4, 5)
swap(treeWithUnorderedLeafHashes.leafHashes, 4, 5)
tests := []struct {
name string
tree *NamespacedMerkleTree
proofStart, proofEnd int
wantErr bool
errType error
}{
{"corrupt leaf hash", treeWithCorruptLeafHash, 4, 5, true, ErrInvalidNodeLen},
{"unordered leaf hashes: the out of order leaf", treeWithUnorderedLeafHashes, 4, 5, true, ErrUnorderedSiblings},
{"unordered leaf hashes: first leaf", treeWithUnorderedLeafHashes, 1, 2, true, ErrUnorderedSiblings}, // for a tree with an unordered set of leaves, the ProveRange method should produce an error for any input range,
// not just the corrupted range.
{"unordered leaf hashes: last leaf", treeWithUnorderedLeafHashes, 7, 8, true, ErrUnorderedSiblings}, // for a tree with an unordered set of leaves, the ProveRange method should produce an error for any input range,
// not just the corrupted range.
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
_, err := tt.tree.ProveRange(tt.proofStart, tt.proofEnd)
assert.Equal(t, tt.wantErr, err != nil)
if tt.wantErr {
assert.True(t, errors.Is(err, tt.errType))
}
})
}
}
// The Test_ProveNamespace_Err function tests that ProveNamespace returns an error when the underlying tree is in an invalid state, such as when the leaves are not ordered by namespace ID or when a leaf hash is corrupt.
func Test_ProveNamespace_Err(t *testing.T) {
// create an NMT with 8 sequentially namespaced leaves, numbered from 1 to 8.
treeWithCorruptLeafHash := exampleNMT(2, true, 1, 2, 3, 4, 5, 6, 7, 8)
// corrupt a leaf hash
treeWithCorruptLeafHash.leafHashes[4] = treeWithCorruptLeafHash.leafHashes[4][:treeWithCorruptLeafHash.NamespaceSize()]
// create an NMT with 8 sequentially namespaced leaves, numbered from 1 to 8.
treeWithUnorderedLeafHashes := exampleNMT(2, true, 1, 2, 3, 4, 5, 6, 7, 8)
// swap the positions of the 4th and 5th leaves
swap(treeWithUnorderedLeafHashes.leaves, 4, 5)
swap(treeWithUnorderedLeafHashes.leafHashes, 4, 5)
tests := []struct {
name string
tree *NamespacedMerkleTree
nID namespace.ID
wantErr bool
errType error
}{
{"corrupt leaf hash", treeWithCorruptLeafHash, namespace.ID{5, 5}, true, ErrInvalidNodeLen},
{"unordered leaf hashes: the queried namespace falls in the corrupted range", treeWithUnorderedLeafHashes, namespace.ID{5, 5}, true, ErrUnorderedSiblings},
{"unordered leaf hashes: query for the first namespace", treeWithUnorderedLeafHashes, namespace.ID{1, 1}, true, ErrUnorderedSiblings}, // for a tree with an unordered set of leaves,
// the ProveNamespace method should produce an error for any input namespace ID.
{"unordered leaf hashes: query for the last namespace", treeWithUnorderedLeafHashes, namespace.ID{8, 8}, true, ErrUnorderedSiblings}, // for a tree with an unordered set of leaves,
// the ProveNamespace method should produce an error for any namespace ID.
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
_, err := tt.tree.ProveNamespace(tt.nID)
assert.Equal(t, tt.wantErr, err != nil)
if tt.wantErr {
assert.True(t, errors.Is(err, tt.errType))
}
})
}
}
// Test_Root_Error tests that the Root method returns an error when the underlying tree is in an invalid state, such as when the leaves are not ordered by namespace ID or when a leaf is corrupt.
func Test_Root_Error(t *testing.T) {
// create an NMT with 8 sequentially namespaced leaves, numbered from 1 to 8.
treeWithCorruptLeafHash := exampleNMT(2, true, 1, 2, 3, 4, 5, 6, 7, 8)
// corrupt a leaf hash
treeWithCorruptLeafHash.leafHashes[4] = treeWithCorruptLeafHash.leafHashes[4][:treeWithCorruptLeafHash.NamespaceSize()-1]
// create an NMT with 8 sequentially namespaced leaves, numbered from 1 to 8.
treeWithUnorderedLeaves := exampleNMT(2, true, 1, 2, 3, 4, 5, 6, 7, 8)
// swap the positions of the 4th and 5th leaves
swap(treeWithUnorderedLeaves.leaves, 4, 5)