-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
genwts.py
35 lines (29 loc) · 859 Bytes
/
genwts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
from torch.autograd import Variable
import utils
import models.crnn as crnn
import struct
model_path = './data/crnn.pth'
model = crnn.CRNN(32, 1, 37, 256)
if torch.cuda.is_available():
model = model.cuda()
print('loading pretrained model from %s' % model_path)
model.load_state_dict(torch.load(model_path))
image = torch.ones(1, 1, 32, 100)
if torch.cuda.is_available():
image = image.cuda()
model.eval()
print(model)
print('image shape ', image.shape)
preds = model(image)
f = open("crnn.wts", 'w')
f.write("{}\n".format(len(model.state_dict().keys())))
for k,v in model.state_dict().items():
print('key: ', k)
print('value: ', v.shape)
vr = v.reshape(-1).cpu().numpy()
f.write("{} {}".format(k, len(vr)))
for vv in vr:
f.write(" ")
f.write(struct.pack(">f", float(vv)).hex())
f.write("\n")