-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
ibnnet.cpp
197 lines (162 loc) · 8.23 KB
/
ibnnet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#include "ibnnet.h"
//#define USE_FP16
namespace trt {
IBNNet::IBNNet(trt::EngineConfig &enginecfg, const IBN ibn) : _engineCfg(enginecfg) {
switch(ibn) {
case IBN::A:
_ibn = "a";
break;
case IBN::B:
_ibn = "b";
break;
case IBN::NONE:
default:
_ibn = "";
break;
}
}
// create the engine using only the API and not any parser.
ICudaEngine *IBNNet::createEngine(IBuilder* builder, IBuilderConfig* config) {
// resnet50-ibna, resnet50-ibnb, resnet50
assert(_ibn == "a" or _ibn == "b" or _ibn == "");
INetworkDefinition* network = builder->createNetworkV2(0U);
// Create input tensor of shape { 3, INPUT_H, INPUT_W } with name INPUT_BLOB_NAME
ITensor* data = network->addInput(_engineCfg.input_name, _dt, Dims3{3, _engineCfg.input_h, _engineCfg.input_w});
assert(data);
std::string path;
if(_ibn == "") {
path = "../resnet50.wts";
} else {
path = "../resnet50-ibn" + _ibn + ".wts";
}
std::map<std::string, Weights> weightMap = loadWeights(path);
Weights emptywts{DataType::kFLOAT, nullptr, 0};
std::map<std::string, std::vector<std::string>> ibn_layers{
{ "a", {"a", "a", "a", "a", "a", "a", "a", "a", "a", "a", "a", "a", "a", "", "", ""}},
{ "b", {"", "", "b", "", "", "","b", "", "", "", "", "", "", "", "", "",}},
{ "", {16, ""}}};
const float mean[3] = {0.485, 0.456, 0.406}; // rgb
const float std[3] = {0.229, 0.224, 0.225};
ITensor* pre_input = MeanStd(network, weightMap, data, "", mean, std, false);
IConvolutionLayer* conv1 = network->addConvolutionNd(*pre_input, 64, DimsHW{7, 7}, weightMap["conv1.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{2, 2});
conv1->setPaddingNd(DimsHW{3, 3});
IActivationLayer* relu1{nullptr};
if (_ibn == "b") {
IScaleLayer* bn1 = addInstanceNorm2d(network, weightMap, *conv1->getOutput(0), "bn1", 1e-5);
relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
} else {
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "bn1", 1e-5);
relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
}
assert(relu1);
// Add max pooling layer with stride of 2x2 and kernel size of 2x2.
IPoolingLayer* pool1 = network->addPoolingNd(*relu1->getOutput(0), PoolingType::kMAX, DimsHW{3, 3});
assert(pool1);
pool1->setStrideNd(DimsHW{2, 2});
pool1->setPaddingNd(DimsHW{1, 1});
IActivationLayer* x = bottleneck_ibn(network, weightMap, *pool1->getOutput(0), 64, 64, 1, "layer1.0.", ibn_layers[_ibn][0]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 256, 64, 1, "layer1.1.", ibn_layers[_ibn][1]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 256, 64, 1, "layer1.2.", ibn_layers[_ibn][2]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 256, 128, 2, "layer2.0.", ibn_layers[_ibn][3]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 512, 128, 1, "layer2.1.", ibn_layers[_ibn][4]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 512, 128, 1, "layer2.2.", ibn_layers[_ibn][5]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 512, 128, 1, "layer2.3.", ibn_layers[_ibn][6]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 512, 256, 2, "layer3.0.", ibn_layers[_ibn][7]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "layer3.1.", ibn_layers[_ibn][8]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "layer3.2.", ibn_layers[_ibn][9]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "layer3.3.", ibn_layers[_ibn][10]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "layer3.4.", ibn_layers[_ibn][11]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 256, 1, "layer3.5.", ibn_layers[_ibn][12]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 1024, 512, 2, "layer4.0.", ibn_layers[_ibn][13]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 2048, 512, 1, "layer4.1.", ibn_layers[_ibn][14]);
x = bottleneck_ibn(network, weightMap, *x->getOutput(0), 2048, 512, 1, "layer4.2.", ibn_layers[_ibn][15]);
IPoolingLayer* pool2 = network->addPoolingNd(*x->getOutput(0), PoolingType::kAVERAGE, DimsHW{7, 7});
assert(pool2);
pool2->setStrideNd(DimsHW{1, 1});
IFullyConnectedLayer* fc1 = network->addFullyConnected(*pool2->getOutput(0), 1000, weightMap["fc.weight"], weightMap["fc.bias"]);
assert(fc1);
fc1->getOutput(0)->setName(_engineCfg.output_name);
std::cout << "set name out" << std::endl;
network->markOutput(*fc1->getOutput(0));
// Build engine
builder->setMaxBatchSize(_engineCfg.max_batch_size);
config->setMaxWorkspaceSize(1 << 20);
#ifdef USE_FP16
config->setFlag(BuilderFlag::kFP16);
#endif
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "build out" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto& mem : weightMap) {
free((void*) (mem.second.values));
}
return engine;
}
bool IBNNet::serializeEngine() {
// Create builder
auto builder = make_holder(createInferBuilder(gLogger));
auto config = make_holder(builder->createBuilderConfig());
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine *engine = createEngine(builder.get(), config.get());
assert(engine);
// Serialize the engine
TensorRTHolder<IHostMemory> modelStream = make_holder(engine->serialize());
assert(modelStream);
std::ofstream p("./ibnnet.engine", std::ios::binary | std::ios::out);
if (!p) {
std::cerr << "could not open plan output file" << std::endl;
return false;
}
p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
return true;
}
bool IBNNet::deserializeEngine() {
std::ifstream file("./ibnnet.engine", std::ios::binary | std::ios::in);
if (file.good()) {
file.seekg(0, file.end);
_engineCfg.stream_size = file.tellg();
file.seekg(0, file.beg);
_engineCfg.trtModelStream = std::shared_ptr<char>( new char[_engineCfg.stream_size], []( char* ptr ){ delete [] ptr; } );
assert(_engineCfg.trtModelStream.get());
file.read(_engineCfg.trtModelStream.get(), _engineCfg.stream_size);
file.close();
_inferEngine = make_unique<trt::InferenceEngine>(_engineCfg);
return true;
}
return false;
}
void IBNNet::preprocessing(const cv::Mat& img, float* const data, const std::size_t stride) {
for (std::size_t i = 0; i < stride; ++i) {
data[i] = img.at<cv::Vec3b>(i)[2] / 255.0;
data[i + stride] = img.at<cv::Vec3b>(i)[1] / 255.0;
data[i + (stride<<1)] = img.at<cv::Vec3b>(i)[0] / 255.0;
}
}
bool IBNNet::inference(std::vector<cv::Mat> &input) {
if(_inferEngine != nullptr) {
const std::size_t stride = _engineCfg.input_w * _engineCfg.input_h;
return _inferEngine.get()->doInference(input.size(),
[&](float* data) {
for(const auto &img : input) {
preprocessing(img, data, stride);
data += 3 * stride;
}
}
);
} else {
return false;
}
}
float* IBNNet::getOutput() {
if(_inferEngine != nullptr)
return _inferEngine.get()->getOutput();
return nullptr;
}
int IBNNet::getDeviceID() {
return _engineCfg.device_id;
}
}