给一个浮点数序列,取最大乘积连续子串的值,例如 -2.5,4,0,3,0.5,8,-1,则取出的最大乘积连续子串为3,0.5,8。也就是说,上述数组中,3 0.5 8这3个数的乘积30.58=12是最大的,而且是连续的。
此最大乘积连续子串与最大乘积子序列不同,请勿混淆,前者子串要求连续,后者子序列不要求连续。也就是说,最长公共子串(Longest CommonSubstring)和最长公共子序列(LongestCommon Subsequence,LCS)是:
- 子串(Substring)是串的一个连续的部分,
- 子序列(Subsequence)则是从不改变序列的顺序,而从序列中去掉任意的元素而获得的新序列;
更简略地说,前者(子串)的字符的位置必须连续,后者(子序列LCS)则不必。比如字符串“ acdfg ”同“ akdfc ”的最长公共子串为“ df ”,而它们的最长公共子序列LCS是“ adf ”,LCS可以使用动态规划法解决。
或许,读者初看此题,可能立马会想到用最简单粗暴的方式:两个for循环直接轮询。
double maxProductSubstring(double *a, int length)
{
double maxResult = a[0];
for (int i = 0; i < length; i++)
{
double x = 1;
for (int j = i; j < length; j++)
{
x *= a[j];
if (x > maxResult)
{
maxResult = x;
}
}
}
return maxResult;
}
但这种蛮力的方法的时间复杂度为O(n^2),能否想办法降低时间复杂度呢?
考虑到乘积子序列中有正有负也还可能有0,我们可以把问题简化成这样:数组中找一个子序列,使得它的乘积最大;同时找一个子序列,使得它的乘积最小(负数的情况)。因为虽然我们只要一个最大积,但由于负数的存在,我们同时找这两个乘积做起来反而方便。也就是说,不但记录最大乘积,也要记录最小乘积。
假设数组为a[],直接利用动态规划来求解,考虑到可能存在负数的情况,我们用maxend来表示以a[i]结尾的最大连续子串的乘积值,用minend表示以a[i]结尾的最小的子串的乘积值,那么状态转移方程为:
maxend = max(max(maxend * a[i], minend * a[i]), a[i]);
minend = min(min(maxend * a[i], minend * a[i]), a[i]);
初始状态为maxend = minend = a[0]。
参考代码如下:
double MaxProductSubstring(double *a, int length)
{
double maxEnd = a[0];
double minEnd = a[0];
double maxResult = a[0];
for (int i = 1; i < length; ++i)
{
double end1 = maxEnd * a[i], end2 = minEnd * a[i];
maxEnd = max(max(end1, end2), a[i]);
minEnd = min(min(end1, end2), a[i]);
maxResult = max(maxResult, maxEnd);
}
return maxResult;
}
动态规划求解的方法一个for循环搞定,所以时间复杂度为O(n)。
1、给定一个长度为N的整数数组,只允许用乘法,不能用除法,计算任意(N-1)个数的组合中乘积最大的一组,并写出算法的时间复杂度。
分析:我们可以把所有可能的(N-1)个数的组合找出来,分别计算它们的乘积,并比较大小。由于总共有N个(N-1)个数的组合,总的时间复杂度为O(N2),显然这不是最好的解法。