Skip to content

Latest commit

 

History

History
264 lines (209 loc) · 5.68 KB

File metadata and controls

264 lines (209 loc) · 5.68 KB

English Version

题目描述

给定一组 N 人(编号为 1, 2, ..., N), 我们想把每个人分进任意大小的两组。

每个人都可能不喜欢其他人,那么他们不应该属于同一组。

形式上,如果 dislikes[i] = [a, b],表示不允许将编号为 ab 的人归入同一组。

当可以用这种方法将所有人分进两组时,返回 true;否则返回 false

 

示例 1:

输入:N = 4, dislikes = [[1,2],[1,3],[2,4]]
输出:true
解释:group1 [1,4], group2 [2,3]

示例 2:

输入:N = 3, dislikes = [[1,2],[1,3],[2,3]]
输出:false

示例 3:

输入:N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
输出:false

 

提示:

  • 1 <= N <= 2000
  • 0 <= dislikes.length <= 10000
  • dislikes[i].length == 2
  • 1 <= dislikes[i][j] <= N
  • dislikes[i][0] < dislikes[i][1]
  • 对于 dislikes[i] == dislikes[j] 不存在 i != j

解法

并查集。

模板 1——朴素并查集:

# 初始化,p存储每个点的父节点
p = list(range(n))

# 返回x的祖宗节点
def find(x):
    if p[x] != x:
        # 路径压缩
        p[x] = find(p[x])
    return p[x]

# 合并a和b所在的两个集合
p[find(a)] = find(b)

模板 2——维护 size 的并查集:

# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
p = list(range(n))
size = [1] * n

# 返回x的祖宗节点
def find(x):
    if p[x] != x:
        # 路径压缩
        p[x] = find(p[x])
    return p[x]

# 合并a和b所在的两个集合
if find(a) != find(b):
    size[find(b)] += size[find(a)]
    p[find(a)] = find(b)

模板 3——维护到祖宗节点距离的并查集:

# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离
p = list(range(n))
d = [0] * n

# 返回x的祖宗节点
def find(x):
    if p[x] != x:
        t = find(p[x])
        d[x] += d[p[x]]
        p[x] = t
    return p[x]

# 合并a和b所在的两个集合
p[find(a)] = find(b)
d[find(a)] = distance

Python3

class Solution:
    def possibleBipartition(self, n: int, dislikes: List[List[int]]) -> bool:
        p = list(range(n))

        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]
        
        dis = defaultdict(list)
        for a, b in dislikes:
            a, b = a - 1, b - 1
            dis[a].append(b)
            dis[b].append(a)
        
        for i in range(n):
            for j in dis[i]:
                if find(i) == find(j):
                    return False
                p[find(j)] = find(dis[i][0])
        return True

Java

class Solution {
    private int[] p;

    public boolean possibleBipartition(int n, int[][] dislikes) {
        p = new int[n];
        List<Integer>[] dis = new List[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
            dis[i] = new ArrayList<>();
        }
        for (int[] d : dislikes) {
            int a = d[0] - 1, b = d[1] - 1;
            dis[a].add(b);
            dis[b].add(a);
        }
        for (int i = 0; i < n; ++i) {
            for (int j : dis[i]) {
                if (find(i) == find(j)) {
                    return false;
                }
                p[find(j)] = find(dis[i].get(0));
            }
        }
        return true;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++

class Solution {
public:
    vector<int> p;

    bool possibleBipartition(int n, vector<vector<int>>& dislikes) {
        p.resize(n);
        for (int i = 0; i < n; ++i) p[i] = i;
        unordered_map<int, vector<int>> dis;
        for (auto& d : dislikes)
        {
            int a = d[0] - 1, b = d[1] - 1;
            dis[a].push_back(b);
            dis[b].push_back(a);
        }
        for (int i = 0; i < n; ++i)
        {
            for (int j : dis[i])
            {
                if (find(i) == find(j)) return false;
                p[find(j)] = find(dis[i][0]);
            }
        }
        return true;
    }

    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
};

Go

func possibleBipartition(n int, dislikes [][]int) bool {
	p := make([]int, n)
	dis := make([][]int, n)
	for i := range p {
		p[i] = i
	}
	var find func(x int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	for _, d := range dislikes {
		a, b := d[0]-1, d[1]-1
		dis[a] = append(dis[a], b)
		dis[b] = append(dis[b], a)
	}
	for i := 0; i < n; i++ {
		for _, j := range dis[i] {
			if find(i) == find(j) {
				return false
			}
			p[find(j)] = find(dis[i][0])
		}
	}
	return true
}

...