-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwarmup.py
63 lines (59 loc) · 3.55 KB
/
warmup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
from tensorflow import keras
from keras import backend as K
def cosine_decay_with_warmup(global_step,learning_rate_base,total_steps,warmup_learning_rate=0.0,warmup_steps=0,hold_base_rate_steps=0):
if total_steps < warmup_steps:
raise ValueError('total_steps must be larger or equal to warmup_steps.')
#The principle of cosine annealing is realized here, and the minimum value of learning rate is set as 0, so the expression is simplified
learning_rate = 0.5 * learning_rate_base * (1 + np.cos(np.pi *(global_step - warmup_steps - hold_base_rate_steps) / float(total_steps - warmup_steps - hold_base_rate_steps)))
#If hold_base_rate_steps are greater than 0, it indicates that the learning rate remains unchanged for a certain number of steps after warm up
if hold_base_rate_steps > 0:
learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps,learning_rate, learning_rate_base)
if warmup_steps > 0:
if learning_rate_base < warmup_learning_rate:
raise ValueError('learning_rate_base must be larger or equal to ''warmup_learning_rate.')
#The realization of linear growth
slope = (learning_rate_base - warmup_learning_rate) / warmup_steps
warmup_rate = slope * global_step + warmup_learning_rate
#Only if global_step is still in the warmup stage will a linearly increased learning rate warmup_rate be used, otherwise a cosine annealing learning rate learning_rate will be used
learning_rate = np.where(global_step < warmup_steps, warmup_rate,learning_rate)
return np.where(global_step > total_steps, 0.0, learning_rate)
class WarmUpCosineDecayScheduler(keras.callbacks.Callback):
"""
Callback is inherited to realize the scheduling of learning rate
"""
def __init__(self,
learning_rate_base,
total_steps,
global_step_init=0,
warmup_learning_rate=0.0,
warmup_steps=0,
hold_base_rate_steps=0,
verbose=0):
super(WarmUpCosineDecayScheduler, self).__init__()
self.learning_rate_base = learning_rate_base
self.total_steps = total_steps
self.global_step = global_step_init
self.warmup_learning_rate = warmup_learning_rate
self.warmup_steps = warmup_steps
self.hold_base_rate_steps = hold_base_rate_steps
self.verbose = verbose
#learning_rates are used to record the learning rate after each update for graphical observation
self.learning_rates = []
#Update the Global Step and record the current learning rate
def on_batch_end(self, batch, logs=None):
self.global_step = self.global_step + 1
lr = K.get_value(self.model.optimizer.lr)
self.learning_rates.append(lr)
#Renewal learning rate
def on_batch_begin(self, batch, logs=None):
lr = cosine_decay_with_warmup(global_step=self.global_step,
learning_rate_base=self.learning_rate_base,
total_steps=self.total_steps,
warmup_learning_rate=self.warmup_learning_rate,
warmup_steps=self.warmup_steps,
hold_base_rate_steps=self.hold_base_rate_steps)
K.set_value(self.model.optimizer.lr, lr)
if self.verbose > 0:
print('\nBatch %05d: setting learning '
'rate to %s.' % (self.global_step + 1, lr))