-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathcnn_3d_with_ae.py
43 lines (35 loc) · 1.36 KB
/
cnn_3d_with_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
from autoencoder import AutoEncoder
import torch.nn as nn
import math
class CNN(nn.Module):
def __init__(self, num_classes=2):
super(CNN, self).__init__()
self.conv1 = nn.Conv3d(1, 410, kernel_size=7, stride=7, padding=3)
self.relu1 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool3d(kernel_size=7,stride=7)
# self.conv2 = nn.Conv3d(410, 200, kernel_size=3, stride=1, padding=1)
# self.relu2 = nn.ReLU(inplace=True)
# self.pool2 = nn.MaxPool3d(kernel_size=3, stride=3)
# self.fc1 = nn.Linear(5*5*5*200, 800)
self.dropout1 = nn.Dropout(0.5)
self.fc1 = nn.Linear(2*3*2*410, 80)
self.dropout2 = nn.Dropout(0.5)
self.fc2 = nn.Linear(80, num_classes)
self.softmax = nn.LogSoftmax()
self.parameter_initialization()
def forward(self, out):
out = self.pool1(self.relu1(self.conv1(out)))
out = self.dropout1(out)
# out = self.pool2(self.relu2(self.conv2(out)))
# out = out.view(-1,5*5*5*200)
out = out.view(-1, 2*3*2*410)
out = self.fc1(out)
out = self.dropout2(out)
out = self.fc2(out)
out = self.softmax(out)
return out
def parameter_initialization(self):
stdv = 1.0 / math.sqrt(410)
for weight in self.parameters():
weight.data.uniform_(-stdv, stdv)