forked from benchopt/benchmark_tv_1d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
objective.py
70 lines (57 loc) · 2.02 KB
/
objective.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from benchopt import BaseObjective
from benchopt import safe_import_context
with safe_import_context() as import_ctx:
import numpy as np
from scipy import optimize
from benchmark_utils.shared import huber
from benchmark_utils.shared import grad_huber
class Objective(BaseObjective):
name = "TV1D"
min_benchopt_version = "1.5"
parameters = {
'reg': [0.5],
'delta': [0.9],
'data_fit': ['quad', 'huber']
}
def set_data(self, A, y, x):
self.A, self.y, self.x = A, y, x
S = self.A @ np.ones(self.A.shape[1])
self.c = self.get_c(S, self.delta)
self.reg_scaled = self.reg*self.get_reg_max(self.c)
def evaluate_result(self, u):
R = self.y - self.A @ u
reg_TV = abs(np.diff(u)).sum()
if self.data_fit == 'quad':
loss = .5 * R @ R
elif self.data_fit == 'huber':
loss = huber(R, self.delta)
norm_x = np.linalg.norm(u - self.x)
return dict(value=loss + self.reg_scaled * reg_TV, norm_x=norm_x)
def get_one_result(self):
return dict(u=np.zeros(self.A.shape[1]))
def get_objective(self):
return dict(A=self.A, reg=self.reg_scaled, y=self.y, c=self.c,
delta=self.delta, data_fit=self.data_fit)
def get_c(self, S, delta):
if self.data_fit == 'quad':
return (S @ self.y)/(S @ S)
else:
return self.c_huber(S, delta)
def c_huber(self, S, delta):
def f(c):
R = self.y - S * c
return abs((S * grad_huber(R, delta)).sum())
yS = self.y / S
return optimize.golden(f, brack=(min(yS), max(yS)))
def get_reg_max(self, c):
L = np.tri(self.A.shape[1])
AL = self.A @ L
z = np.zeros(self.A.shape[1])
z[0] = c
return np.max(abs(self.grad(AL, z)))
def grad(self, A, u):
R = self.y - A @ u
if self.data_fit == 'quad':
return - A.T @ R
else:
return - A.T @ grad_huber(R, self.delta)