forked from benchopt/benchmark_tv_1d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_results.py
249 lines (211 loc) · 8.11 KB
/
plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import re
import os
import itertools
import numpy as np
import pandas as pd
from pathlib import Path
import matplotlib.pyplot as plt
import matplotlib as mpl
usetex = mpl.checkdep_usetex(True)
params = {
"font.family": "serif",
"font.serif": ["Times New Roman"],
"text.usetex": usetex,
}
mpl.rcParams.update(params)
# matplotlib style config
titlesize = 22
ticksize = 16
labelsize = 20
MARKERS = list(plt.Line2D.markers.keys())[:-4]
CMAP = plt.get_cmap('tab20')
#####
regex = re.compile(r'\[(.*?)\]')
SAVEFIG = True
PLOT_COLUMN = "objective_value"
fignames = ["tv1d", "tv1d_norm_x"]
BENCH_FILES = [
'./tv1d.parquet',
]
FLOATING_PRECISION = 1e-8
MIN_XLIM = 1e-4
GPU_SOLVERS = []
DICT_XLIM = {}
YTICKS = (1e4, 1, 1e-4, 1e-8)
IDX_ROWS = [
{
("", "data_fit=quad,delta=0,reg=0.1", "objective_value"): (
0, r"$\ell_2$, $\lambda=0.1\lambda_{\max}$"
),
("", "data_fit=quad,delta=0,reg=0.5", "objective_value"): (
1, r"$\ell_2$, $\lambda=0.5\lambda_{\max}$"
),
("", "data_fit=huber,delta=0.9,reg=0.1", "objective_value"): (
2, r"Huber[$\mu=0.9$], $\lambda=0.1\lambda_{\max}$"
),
("", "data_fit=huber,delta=0.9,reg=0.5", "objective_value"): (
3, r"Huber[$\mu=0.9$], $\lambda=0.5\lambda_{\max}$"
)
},
{
("", "data_fit=quad,delta=0,reg=0.1", "objective_norm_x"): (
0, r"$\ell_2$ reg=0.1 -- $\|x - u\|_2$"
),
("", "data_fit=quad,delta=0,reg=0.5", "objective_norm_x"): (
1, r"$\ell_2$ reg=0.5 -- $\|x - u\|_2$"
),
("", "data_fit=huber,delta=0.9,reg=0.1", "objective_norm_x"): (
2, r"Huber reg=0.1 -- $\|x - u\|_2$"
),
("", "data_fit=huber,delta=0.9,reg=0.5", "objective_norm_x"): (
3, r"Huber reg=0.5 -- $\|x - u\|_2$"
)
}
]
IDX_COLUMNS = [
{
("type_A=conv,type_n=gaussian,type_x=sin", "", ""): (
0, "type_A=conv,type_x=sin"
),
("type_A=conv,type_n=gaussian,type_x=block", "", ""): (
1, "type_A=conv,type_x=block"
),
("type_A=random,type_n=gaussian,type_x=sin", "", ""): (
2, "type_A=random,type_x=sin"
),
("type_A=random,type_n=gaussian,type_x=block", "", ""): (
3, "type_A=random,type_x=block"
),
}
] * 2
all_solvers = {
'ADMM analysis[gamma=25.0,update_pen=False]': "ADMM (A)",
'Primal PGD analysis[alpha=1.0,use_acceleration=False]': "PGD (A)",
'Primal PGD analysis[alpha=1.0,use_acceleration=True]': "APGD (A)",
'Chambolle-Pock PD-split analysis[ratio=1.0,theta=1.0]': (
"Chambolle-Pock (A)"
),
'CondatVu analysis[eta=1.0,ratio=1.0]': "Condat-Vu (A)",
'Dual PGD analysis[alpha=1.0,use_acceleration=False]': "Dual PGD (A)",
'Dual PGD analysis[alpha=1.0,use_acceleration=True]': "Dual APGD (A)",
'Celer synthesis': "celer (S)",
'FP synthesis[alpha=1.9,use_acceleration=False]': "FP (S)",
'FP synthesis[alpha=1.9,use_acceleration=True]': "AFP (S)",
'Primal PGD synthesis (ISTA)[alpha=1.9,use_acceleration=False]': (
"PGD(1.9/L) (S)"
),
'Primal PGD synthesis (ISTA)[alpha=1.0,use_acceleration=True]': (
"APGD(1/L) (S)"
),
'skglm synthesis': "skglm (S)",
}
df = pd.read_parquet(BENCH_FILES[0])
solvers = df["solver_name"].unique()
STYLE = {solver_name: (CMAP(i), MARKERS[i], all_solvers[solver_name])
for i, solver_name in enumerate(solvers)}
fontsize = 12
labelsize = 12
def filter_data_and_obj(dataset, objective, idx):
for (p_data, p_obj, col), res in idx.items():
if ((p_data is None or p_data in dataset)
and (p_obj is None or p_obj in objective)):
return (*res, col)
return None, None, None
for figname, idx_rows, idx_cols in zip(fignames, IDX_ROWS, IDX_COLUMNS):
plt.close('all')
n_rows, n_cols = len(idx_rows), len(idx_cols)
main_fig, axarr = plt.subplots(
n_rows,
n_cols,
sharex='row',
sharey='row',
figsize=[11, 1 + 2 * n_rows],
constrained_layout=True, squeeze=False
)
for bench_file in BENCH_FILES:
df = pd.read_parquet(bench_file)
datasets = df["data_name"].unique()
objectives = df["objective_name"].unique()
solvers = df["solver_name"].unique()
solvers = np.array(sorted(solvers, key=str.lower))
for dataset in datasets:
for objective in objectives:
idx_col, clabel, obj_col = filter_data_and_obj(
dataset, objective, idx_cols
)
idx_row, rlabel, obj_col_ = filter_data_and_obj(
dataset, objective, idx_rows
)
obj_col = obj_col or obj_col_
if None in [idx_row, idx_col]:
continue
df2 = df.query(
'data_name == @dataset & objective_name == @objective'
)
ax = axarr[idx_row, idx_col]
print(idx_row, idx_col, dataset, objective)
if obj_col == "objective_value":
c_star = np.min(df2[obj_col]) - FLOATING_PRECISION
else:
c_star = 0
for i, solver_name in enumerate(all_solvers):
# Get style if it exists or create a new one
color, marker, label = STYLE.get(solver_name)
df3 = df2.query('solver_name == @solver_name')
curve = df3.groupby('stop_val').median()
q1 = df3.groupby('stop_val')['time'].quantile(.1)
q9 = df3.groupby('stop_val')['time'].quantile(.9)
y = curve[obj_col] - c_star
ls = "--" if solver_name in GPU_SOLVERS else None
ax.loglog(
curve["time"], y, color=color, marker=marker,
label=label, linewidth=2, markevery=3, ls=ls,
markersize=6,
)
ax.set_xlim(DICT_XLIM.get(dataset, MIN_XLIM), ax.get_xlim()[1])
x1, x2 = ax.get_xlim()
x1, x2 = np.ceil(np.log10(x1)), np.floor(np.log10(x2))
y1, y2 = ax.get_ylim()
# ax.set_ylim(y1, 1e5 if 'criteo' not in dataset else 1e8)
xticks = 10 ** np.arange(x1, x2+1)
ax.set_xticks(xticks)
axarr[idx_row, 0].set_yticks(YTICKS)
axarr[0, idx_col].set_title(clabel, fontsize=labelsize)
axarr[n_rows-1, idx_col].set_xlabel(
"Time (s)", fontsize=labelsize
)
ax.tick_params(axis='both', which='major', labelsize=ticksize)
ax.grid()
axarr[idx_row, 0].set_ylabel(rlabel, fontsize=labelsize)
# main_fig.suptitle(regex.sub('', objective), fontsize=fontsize)
plt.show(block=False)
# plot legend on separate fig
leg_fig, ax2 = plt.subplots(1, 1, figsize=(20, 4))
n_col = 4
if n_col is None:
n_col = len(axarr[0, 0].lines)
# take first ax, more likely to have all solvers converging
ax = axarr[0, 0]
lines_ordered = list(itertools.chain(
*[ax.lines[i::n_col] for i in range(n_col)]
))
legend = ax2.legend(
lines_ordered, [line.get_label() for line in lines_ordered],
ncol=n_col, loc="upper center")
leg_fig.canvas.draw()
leg_fig.tight_layout()
width = legend.get_window_extent().width
height = legend.get_window_extent().height
leg_fig.set_size_inches((width / 80, max(height / 80, 0.5)))
plt.axis('off')
plt.show(block=False)
if SAVEFIG:
Path('./figures').mkdir(exist_ok=True)
main_fig_name = f"figures/{figname}.pdf"
main_fig.savefig(main_fig_name, dpi=300)
os.system(f"pdfcrop '{main_fig_name}' '{main_fig_name}'")
main_fig.savefig(f"figures/{figname}.svg")
leg_fig_name = f"figures/{figname}_legend.pdf"
leg_fig.savefig(leg_fig_name, dpi=300)
os.system(f"pdfcrop '{leg_fig_name}' '{leg_fig_name}'")
leg_fig.savefig(f"figures/{figname}_legend.svg", dpi=300)