-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathmodel_bert_crf.py
90 lines (73 loc) · 3.98 KB
/
model_bert_crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import numpy as np
import tensorflow as tf
from bert import modeling as bert_modeling
class MyModel(object):
def __init__(self,
bert_config,
vocab_size_bio,
use_lstm,
use_crf):
self.inputs_seq = tf.placeholder(shape=[None, None], dtype=tf.int32, name="inputs_seq") # B * (S+2)
self.inputs_mask = tf.placeholder(shape=[None, None], dtype=tf.int32, name="inputs_mask") # B * (S+2)
self.inputs_segment = tf.placeholder(shape=[None, None], dtype=tf.int32, name="inputs_segment") # B * (S+2)
self.outputs_seq = tf.placeholder(shape=[None, None], dtype=tf.int32, name='outputs_seq') # B * (S+2)
inputs_seq_len = tf.reduce_sum(self.inputs_mask, axis=-1) # B
bert_model = bert_modeling.BertModel(
config=bert_config,
is_training=True,
input_ids=self.inputs_seq,
input_mask=self.inputs_mask,
token_type_ids=self.inputs_segment,
use_one_hot_embeddings=False
)
bert_outputs = bert_model.get_sequence_output() # B * (S+2) * D
if not use_lstm:
hiddens = bert_outputs
else:
with tf.variable_scope('bilstm'):
cell_fw = tf.nn.rnn_cell.LSTMCell(300)
cell_bw = tf.nn.rnn_cell.LSTMCell(300)
((rnn_fw_outputs, rnn_bw_outputs), (rnn_fw_final_state, rnn_bw_final_state)) = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell_fw,
cell_bw=cell_bw,
inputs=bert_outputs,
sequence_length=inputs_seq_len,
dtype=tf.float32
)
rnn_outputs = tf.add(rnn_fw_outputs, rnn_bw_outputs) # B * (S+2) * D
hiddens = rnn_outputs
with tf.variable_scope('projection'):
logits_seq = tf.layers.dense(hiddens, vocab_size_bio) # B * (S+2) * V
probs_seq = tf.nn.softmax(logits_seq)
if not use_crf:
preds_seq = tf.argmax(probs_seq, axis=-1, name="preds_seq") # B * S
else:
log_likelihood, transition_matrix = tf.contrib.crf.crf_log_likelihood(logits_seq, self.outputs_seq, inputs_seq_len)
preds_seq, crf_scores = tf.contrib.crf.crf_decode(logits_seq, transition_matrix, inputs_seq_len)
self.outputs = preds_seq
with tf.variable_scope('loss'):
if not use_crf:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_seq, labels=self.outputs_seq) # B * S
masks = tf.sequence_mask(inputs_seq_len, dtype=tf.float32) # B * S
loss = tf.reduce_sum(loss * masks, axis=-1) / tf.cast(inputs_seq_len, tf.float32) # B
else:
loss = -log_likelihood / tf.cast(inputs_seq_len, tf.float32) # B
self.loss = tf.reduce_mean(loss)
with tf.variable_scope('opt'):
params_of_bert = []
params_of_other = []
for var in tf.trainable_variables():
vname = var.name
if vname.startswith("bert"):
params_of_bert.append(var)
else:
params_of_other.append(var)
opt1 = tf.train.AdamOptimizer(1e-4)
opt2 = tf.train.AdamOptimizer(1e-3)
gradients_bert = tf.gradients(loss, params_of_bert)
gradients_other = tf.gradients(loss, params_of_other)
gradients_bert_clipped, norm_bert = tf.clip_by_global_norm(gradients_bert, 5.0)
gradients_other_clipped, norm_other = tf.clip_by_global_norm(gradients_other, 5.0)
train_op_bert = opt1.apply_gradients(zip(gradients_bert_clipped, params_of_bert))
train_op_other = opt2.apply_gradients(zip(gradients_other_clipped, params_of_other))
self.train_op = (train_op_bert, train_op_other)