-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathmodel_multitask_lstm_wlf.py
82 lines (65 loc) · 4.21 KB
/
model_multitask_lstm_wlf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import tensorflow as tf
import random
import numpy as np
class MyModel(object):
def __init__(self,
embedding_dim,
hidden_dim,
vocab_size_char,
vocab_size_word,
vocab_size_bio,
vocab_size_attr,
O_tag_index,
use_crf):
self.inputs_seq_char = tf.placeholder(tf.int32, [None, None], name="inputs_seq_char")
self.inputs_seq_word = tf.placeholder(tf.int32, [None, None], name="inputs_seq_word")
self.inputs_seq_len = tf.placeholder(tf.int32, [None], name="inputs_seq_len")
self.outputs_seq_bio = tf.placeholder(tf.int32, [None, None], name='outputs_seq_bio')
self.outputs_seq_attr = tf.placeholder(tf.int32, [None, None], name='outputs_seq_attr')
with tf.variable_scope('embedding_layer'):
embedding_matrix_char = tf.get_variable("embedding_matrix_char", [vocab_size_char, embedding_dim], dtype=tf.float32)
embedding_matrix_word = tf.get_variable("embedding_matrix_word", [vocab_size_word, embedding_dim], dtype=tf.float32)
embedded_char = tf.nn.embedding_lookup(embedding_matrix_char, self.inputs_seq_char) # B * S * D
embedded_word = tf.nn.embedding_lookup(embedding_matrix_word, self.inputs_seq_word) # B * S * D
embedded = tf.concat([embedded_char, embedded_word], axis=2)
self.embedding_matrix_word = embedding_matrix_word
with tf.variable_scope('encoder'):
cell_fw = tf.nn.rnn_cell.LSTMCell(hidden_dim)
cell_bw = tf.nn.rnn_cell.LSTMCell(hidden_dim)
((rnn_fw_outputs, rnn_bw_outputs), (rnn_fw_final_state, rnn_bw_final_state)) = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell_fw,
cell_bw=cell_bw,
inputs=embedded,
sequence_length=self.inputs_seq_len,
dtype=tf.float32
)
rnn_outputs = tf.add(rnn_fw_outputs, rnn_bw_outputs) # B * S * D
with tf.variable_scope('bio_projection'):
logits_bio = tf.layers.dense(rnn_outputs, vocab_size_bio) # B * S * V
probs_bio = tf.nn.softmax(logits_bio, axis=-1)
if not use_crf:
preds_bio = tf.argmax(probs_bio, axis=-1, name="preds_bio") # B * S
else:
log_likelihood, transition_matrix = tf.contrib.crf.crf_log_likelihood(logits_bio,
self.outputs_seq_bio,
self.inputs_seq_len)
preds_bio, crf_scores = tf.contrib.crf.crf_decode(logits_bio, transition_matrix, self.inputs_seq_len)
with tf.variable_scope('attr_projection'):
logits_attr = tf.layers.dense(rnn_outputs, vocab_size_attr) # B * S * V
probs_attr = tf.nn.softmax(logits_attr, axis=-1)
preds_attr = tf.argmax(probs_attr, axis=-1, name="preds_attr") # B * S
self.outputs = (preds_bio, preds_attr)
with tf.variable_scope('loss'):
if not use_crf:
loss_bio = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_bio, labels=self.outputs_seq_bio) # B * S
masks_bio = tf.sequence_mask(self.inputs_seq_len, dtype=tf.float32) # B * S
loss_bio = tf.reduce_sum(loss_bio * masks_bio, axis=-1) / tf.cast(self.inputs_seq_len, tf.float32) # B
else:
loss_bio = -log_likelihood / tf.cast(self.inputs_seq_len, tf.float32)
loss_attr = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_attr, labels=self.outputs_seq_attr) # B * S
masks_attr = tf.cast(tf.not_equal(preds_bio, O_tag_index), tf.float32) # B * S
loss_attr = tf.reduce_sum(loss_attr * masks_attr, axis=-1) / (tf.reduce_sum(masks_attr, axis=-1) + 1e-5) # B
loss = loss_bio + loss_attr # B
self.loss = tf.reduce_mean(loss)
with tf.variable_scope('opt'):
self.train_op = tf.train.AdamOptimizer().minimize(loss)