-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbitring.go
259 lines (231 loc) · 7.52 KB
/
bitring.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// package bitring provides a bitmap ring-buffer which tracks the state of windowed out-of-order processing
// over a sequence of logical offsets. The initially marked offset can be any non-negative integer.
package bitring
import (
"math/bits"
)
const (
minCapacity = 64
)
func pow2BitCapacity(bitCapacity int) uint {
if bitCapacity < minCapacity {
return minCapacity
}
return 1 << uint(1+(63-bits.LeadingZeros64(uint64(bitCapacity-1))))
}
func getBit(bitmap []uint64, pos uint) bool {
return bitmap[pos/64]&(1<<(pos%64)) != 0
}
func setBit(bitmap []uint64, pos uint) {
bitmap[pos/64] |= 1 << (pos % 64)
}
func tryClearBit(bitmap []uint64, pos uint) bool {
blockIndex, bit := pos/64, uint64(1<<(pos%64))
block := bitmap[blockIndex]
bitmap[blockIndex] = block &^ bit
return block&bit != 0
}
// Ring is a bitmap ring-buffer which tracks the state of windowed out-of-order processing
// over a sequence of logical offsets. The initially marked offset can be any non-negative integer.
type Ring struct {
bitmap []uint64
tailBit uint
lowestMarked int
highestMarked int
lowestPending int
highestPending int
lowestComplete int
highestComplete int
numCommittable int
}
// New creates a ring with initial capacity to store at least bitCapacity bits.
func New(bitCapacity int) *Ring {
return &Ring{
bitmap: make([]uint64, pow2BitCapacity(bitCapacity)/64),
lowestMarked: -1,
highestMarked: -1,
lowestPending: -1,
highestPending: -1,
lowestComplete: -1,
highestComplete: -1,
}
}
// Reset the state of r with initial capacity to store at least bitCapacity bits.
func (r *Ring) Reset(bitCapacity int) {
r.resetBitmap(bitCapacity)
r.lowestMarked = -1
r.highestMarked = -1
r.lowestPending = -1
r.highestPending = -1
r.lowestComplete = -1
r.highestComplete = -1
}
func (r *Ring) resetBitmap(bitCapacity int) {
if initialBits := pow2BitCapacity(bitCapacity); r.bitCapacity() != initialBits {
r.bitmap = make([]uint64, initialBits/64)
} else {
for i := range r.bitmap {
r.bitmap[i] = 0
}
}
}
// LowestMarkedOffset returns the first marked offset.
func (r *Ring) LowestMarkedOffset() int { return r.lowestMarked }
// HighestMarkedOffset returns the highest offset which has been marked pending or complete.
func (r *Ring) HighestMarkedOffset() int { return r.highestMarked }
// LowestPendingOffset returns the lowest offset which has been marked pending but not complete.
func (r *Ring) LowestPendingOffset() int { return r.lowestPending }
// HighestPendingOffset returns the highest offset which has been marked pending but not complete.
func (r *Ring) HighestPendingOffset() int {
if r.highestPending >= 0 {
return r.highestPending
}
r.highestPending = r.findHighestPending()
return r.highestPending
}
// LowestCompleteOffset returns the lowest offset which has been marked complete.
func (r *Ring) LowestCompleteOffset() int {
if r.lowestComplete >= 0 {
return r.lowestComplete
}
r.lowestComplete = r.findLowestComplete()
return r.lowestComplete
}
// HighestCompleteOffset returns the highest offset which has been marked complete.
func (r *Ring) HighestCompleteOffset() int { return r.highestComplete }
// CommittableOffset returns the lowest offset which has been marked complete with
// no lower offsets which have not been marked complete.
func (r *Ring) CommittableOffset() int {
if r.lowestPending < 0 {
return r.highestMarked
}
return r.lowestPending - 1
}
// CommittableCount returns the number of offsets which have marked complete but can
// only be committed once a lower pending offset is marked complete.
func (r *Ring) CommittableCount() int { return r.numCommittable }
// PendingRangeSize returns the number of offsets between the lowest offset which has been marked
// pending but not complete and the highest offset which has been marked pending or complete.
func (r *Ring) PendingRangeSize() int {
if r.lowestPending < 0 {
return 0
}
return r.highestMarked + 1 - r.lowestPending
}
// CompleteRangeSize returns the number of offsets between the lowest offset which has been
// marked pending but not complete and the highest offset which has been marked complete.
func (r *Ring) CompleteRangeSize() int {
if r.lowestPending < 0 || r.highestComplete < 0 {
return 0
}
return r.highestComplete + 1 - r.lowestPending
}
// MarkPending marks offset as pending.
func (r *Ring) MarkPending(offset int) {
if offset > r.highestMarked {
r.highestMarked = offset
}
if r.lowestMarked >= 0 {
if r.highestPending < offset {
r.highestPending = offset
}
if r.lowestPending < 0 || r.lowestPending > offset {
r.lowestPending = offset
}
return
}
r.lowestMarked = offset
r.lowestPending = offset
}
// MarkComplete marks offset as complete.
func (r *Ring) MarkComplete(offset int) {
rel := offset - r.lowestPending
if rel < 0 {
return // already committed
}
var pos uint
if uint(rel) < r.bitCapacity() {
pos = r.wrapForward(r.tailBit + uint(rel))
if getBit(r.bitmap, pos) {
return // already marked
}
} else {
r.resize(rel+1, r.CompleteRangeSize())
pos = uint(rel)
}
setBit(r.bitmap, pos)
r.numCommittable++
// lowestPending is adjusted below, if the lowest pending offset is being marked complete.
r.highestPending = -1 // unset cached offset
r.lowestComplete = -1 // unset cached offset
if r.highestComplete < offset {
r.highestComplete = offset
}
if pos != r.tailBit {
return
}
// When the lowest pending offset is being marked complete, coalesce with subsequent offsets
// which are already marked complete:
for tryClearBit(r.bitmap, r.tailBit) {
r.tailBit = r.wrapForward(r.tailBit + 1)
r.numCommittable--
r.lowestPending++
}
// Reset internal state if all offsets are committable:
if r.lowestPending > r.highestMarked {
r.lowestPending = -1
r.tailBit = 0
r.resetBitmap(minCapacity)
return
}
rangeSize := r.CompleteRangeSize()
// If the bitmap is less than 25% full, resize it to be approximately 50% full:
if uint(rangeSize*4) < r.bitCapacity() {
r.resize(rangeSize*2, rangeSize)
}
}
func (r *Ring) bitCapacity() uint { return uint(len(r.bitmap)) * 64 }
// Wrap around to the start if necessary (this assumes the capacity is always a power of 2).
func (r *Ring) wrapForward(bitPosition uint) uint {
return bitPosition & (r.bitCapacity() - 1)
}
// Wrap around to the end if necessary (this assumes the capacity is always a power of 2).
func (r *Ring) wrapBack1(bitPosition uint) uint {
bitCap := r.bitCapacity()
return (bitCap + bitPosition - 1) & (bitCap - 1)
}
func (r *Ring) resize(bitCapacity, completeRangeSize int) {
existing := r.bitmap
r.bitmap = make([]uint64, pow2BitCapacity(bitCapacity)/64)
rangeBlocks := completeRangeSize / 64
if completeRangeSize%64 != 0 || r.tailBit%64 != 0 {
rangeBlocks++
}
for copied, block := 0, r.tailBit/64; copied < rangeBlocks; copied, block = copied+1, (block+1)&(uint(len(existing))-1) {
r.bitmap[copied] = existing[block]
}
r.tailBit = 0
}
func (r *Ring) findHighestPending() int {
if r.lowestPending < 0 {
return -1
}
if r.highestComplete < r.highestMarked {
return r.highestMarked
}
offset := r.highestComplete
for i := r.wrapForward(r.tailBit + uint(r.highestComplete-r.lowestPending)); i != r.tailBit && getBit(r.bitmap, i); i = r.wrapBack1(i) {
offset--
}
return offset
}
func (r *Ring) findLowestComplete() int {
if r.lowestPending < 0 || r.highestComplete < 0 {
return -1
}
offset, end := r.lowestPending, r.wrapForward(r.tailBit+uint(r.highestComplete-r.lowestPending))
for i := r.tailBit; i != end && !getBit(r.bitmap, i); i = r.wrapForward(i + 1) {
offset++
}
return offset
}