-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
test.py
79 lines (58 loc) · 2.25 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#test.py
#!/usr/bin/env python3
""" test neuron network performace
print top1 and top5 err on test dataset
of a model
author baiyu
"""
import argparse
from matplotlib import pyplot as plt
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from conf import settings
from utils import get_network, get_test_dataloader
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-net', type=str, required=True, help='net type')
parser.add_argument('-weights', type=str, required=True, help='the weights file you want to test')
parser.add_argument('-gpu', action='store_true', default=False, help='use gpu or not')
parser.add_argument('-b', type=int, default=16, help='batch size for dataloader')
args = parser.parse_args()
net = get_network(args)
cifar100_test_loader = get_test_dataloader(
settings.CIFAR100_TRAIN_MEAN,
settings.CIFAR100_TRAIN_STD,
#settings.CIFAR100_PATH,
num_workers=4,
batch_size=args.b,
)
net.load_state_dict(torch.load(args.weights))
print(net)
net.eval()
correct_1 = 0.0
correct_5 = 0.0
total = 0
with torch.no_grad():
for n_iter, (image, label) in enumerate(cifar100_test_loader):
print("iteration: {}\ttotal {} iterations".format(n_iter + 1, len(cifar100_test_loader)))
if args.gpu:
image = image.cuda()
label = label.cuda()
print('GPU INFO.....')
print(torch.cuda.memory_summary(), end='')
output = net(image)
_, pred = output.topk(5, 1, largest=True, sorted=True)
label = label.view(label.size(0), -1).expand_as(pred)
correct = pred.eq(label).float()
#compute top 5
correct_5 += correct[:, :5].sum()
#compute top1
correct_1 += correct[:, :1].sum()
if args.gpu:
print('GPU INFO.....')
print(torch.cuda.memory_summary(), end='')
print()
print("Top 1 err: ", 1 - correct_1 / len(cifar100_test_loader.dataset))
print("Top 5 err: ", 1 - correct_5 / len(cifar100_test_loader.dataset))
print("Parameter numbers: {}".format(sum(p.numel() for p in net.parameters())))