forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzmath.h
251 lines (207 loc) · 6.51 KB
/
zmath.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#pragma once
// Complex number math operations that act as no-ops for other dtypes.
#include <c10/util/complex.h>
#include <c10/util/math_compat.h>
#include <c10/util/MathConstants.h>
#include<ATen/NumericUtils.h>
namespace at { namespace native {
inline namespace CPU_CAPABILITY {
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
inline VALUE_TYPE zabs (SCALAR_TYPE z) {
return z;
}
template<>
inline c10::complex<float> zabs <c10::complex<float>> (c10::complex<float> z) {
return c10::complex<float>(std::abs(z));
}
template<>
inline float zabs <c10::complex<float>, float> (c10::complex<float> z) {
return std::abs(z);
}
template<>
inline c10::complex<double> zabs <c10::complex<double>> (c10::complex<double> z) {
return c10::complex<double>(std::abs(z));
}
template<>
inline double zabs <c10::complex<double>, double> (c10::complex<double> z) {
return std::abs(z);
}
// This overload corresponds to non-complex dtypes.
// The function is consistent with its NumPy equivalent
// for non-complex dtypes where `pi` is returned for
// negative real numbers and `0` is returned for 0 or positive
// real numbers.
// Note: `nan` is propagated.
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
inline VALUE_TYPE angle_impl (SCALAR_TYPE z) {
if (at::_isnan(z)) {
return z;
}
return z < 0 ? c10::pi<double> : 0;
}
template<>
inline c10::complex<float> angle_impl <c10::complex<float>> (c10::complex<float> z) {
return c10::complex<float>(std::arg(z), 0.0);
}
template<>
inline float angle_impl <c10::complex<float>, float> (c10::complex<float> z) {
return std::arg(z);
}
template<>
inline c10::complex<double> angle_impl <c10::complex<double>> (c10::complex<double> z) {
return c10::complex<double>(std::arg(z), 0.0);
}
template<>
inline double angle_impl <c10::complex<double>, double> (c10::complex<double> z) {
return std::arg(z);
}
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
constexpr VALUE_TYPE real_impl (SCALAR_TYPE z) {
return z; //No-Op
}
template<>
constexpr c10::complex<float> real_impl <c10::complex<float>> (c10::complex<float> z) {
return c10::complex<float>(z.real(), 0.0);
}
template<>
constexpr float real_impl <c10::complex<float>, float> (c10::complex<float> z) {
return z.real();
}
template<>
constexpr c10::complex<double> real_impl <c10::complex<double>> (c10::complex<double> z) {
return c10::complex<double>(z.real(), 0.0);
}
template<>
constexpr double real_impl <c10::complex<double>, double> (c10::complex<double> z) {
return z.real();
}
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
constexpr VALUE_TYPE imag_impl (SCALAR_TYPE /*z*/) {
return 0;
}
template<>
constexpr c10::complex<float> imag_impl <c10::complex<float>> (c10::complex<float> z) {
return c10::complex<float>(z.imag(), 0.0);
}
template<>
constexpr float imag_impl <c10::complex<float>, float> (c10::complex<float> z) {
return z.imag();
}
template<>
constexpr c10::complex<double> imag_impl <c10::complex<double>> (c10::complex<double> z) {
return c10::complex<double>(z.imag(), 0.0);
}
template<>
constexpr double imag_impl <c10::complex<double>, double> (c10::complex<double> z) {
return z.imag();
}
template <typename TYPE>
inline TYPE conj_impl (TYPE z) {
return z; //No-Op
}
template<>
inline c10::complex<at::Half> conj_impl <c10::complex<at::Half>> (c10::complex<at::Half> z) {
return c10::complex<at::Half>{z.real(), -z.imag()};
}
template<>
inline c10::complex<float> conj_impl <c10::complex<float>> (c10::complex<float> z) {
return c10::complex<float>(z.real(), -z.imag());
}
template<>
inline c10::complex<double> conj_impl <c10::complex<double>> (c10::complex<double> z) {
return c10::complex<double>(z.real(), -z.imag());
}
template <typename TYPE>
inline TYPE ceil_impl (TYPE z) {
return std::ceil(z);
}
template <>
inline c10::complex<float> ceil_impl (c10::complex<float> z) {
return c10::complex<float>(std::ceil(z.real()), std::ceil(z.imag()));
}
template <>
inline c10::complex<double> ceil_impl (c10::complex<double> z) {
return c10::complex<double>(std::ceil(z.real()), std::ceil(z.imag()));
}
template<typename T>
inline c10::complex<T> sgn_impl (c10::complex<T> z) {
if (z == c10::complex<T>(0, 0)) {
return c10::complex<T>(0, 0);
} else {
return z / zabs(z);
}
}
template <typename TYPE>
inline TYPE floor_impl (TYPE z) {
return std::floor(z);
}
template <>
inline c10::complex<float> floor_impl (c10::complex<float> z) {
return c10::complex<float>(std::floor(z.real()), std::floor(z.imag()));
}
template <>
inline c10::complex<double> floor_impl (c10::complex<double> z) {
return c10::complex<double>(std::floor(z.real()), std::floor(z.imag()));
}
template <typename TYPE>
inline TYPE round_impl (TYPE z) {
return std::nearbyint(z);
}
template <>
inline c10::complex<float> round_impl (c10::complex<float> z) {
return c10::complex<float>(std::nearbyint(z.real()), std::nearbyint(z.imag()));
}
template <>
inline c10::complex<double> round_impl (c10::complex<double> z) {
return c10::complex<double>(std::nearbyint(z.real()), std::nearbyint(z.imag()));
}
template <typename TYPE>
inline TYPE trunc_impl (TYPE z) {
return std::trunc(z);
}
template <>
inline c10::complex<float> trunc_impl (c10::complex<float> z) {
return c10::complex<float>(std::trunc(z.real()), std::trunc(z.imag()));
}
template <>
inline c10::complex<double> trunc_impl (c10::complex<double> z) {
return c10::complex<double>(std::trunc(z.real()), std::trunc(z.imag()));
}
template <typename TYPE, std::enable_if_t<!c10::is_complex<TYPE>::value, int> = 0>
inline TYPE max_impl (TYPE a, TYPE b) {
if (_isnan<TYPE>(a) || _isnan<TYPE>(b)) {
return std::numeric_limits<TYPE>::quiet_NaN();
} else {
return std::max(a, b);
}
}
template <typename TYPE, std::enable_if_t<c10::is_complex<TYPE>::value, int> = 0>
inline TYPE max_impl (TYPE a, TYPE b) {
if (_isnan<TYPE>(a)) {
return a;
} else if (_isnan<TYPE>(b)) {
return b;
} else {
return std::abs(a) > std::abs(b) ? a : b;
}
}
template <typename TYPE, std::enable_if_t<!c10::is_complex<TYPE>::value, int> = 0>
inline TYPE min_impl (TYPE a, TYPE b) {
if (_isnan<TYPE>(a) || _isnan<TYPE>(b)) {
return std::numeric_limits<TYPE>::quiet_NaN();
} else {
return std::min(a, b);
}
}
template <typename TYPE, std::enable_if_t<c10::is_complex<TYPE>::value, int> = 0>
inline TYPE min_impl (TYPE a, TYPE b) {
if (_isnan<TYPE>(a)) {
return a;
} else if (_isnan<TYPE>(b)) {
return b;
} else {
return std::abs(a) < std::abs(b) ? a : b;
}
}
} // end namespace
}} //end at::native