forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet_async_scheduling.cc
310 lines (278 loc) · 10 KB
/
net_async_scheduling.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#include "caffe2/core/net_async_scheduling.h"
#include "caffe2/core/net_async_tracing.h"
namespace caffe2 {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
AsyncSchedulingNet::AsyncSchedulingNet(
const std::shared_ptr<const NetDef>& net_def,
Workspace* ws)
: AsyncNetBase(net_def, ws), running_(false) {}
void AsyncSchedulingNet::reset() {
AsyncNetBase::reset();
processed_tasks_num_ = 0;
}
void AsyncSchedulingNet::Wait() {
std::unique_lock<std::mutex> lock(running_mutex_);
while (running_) {
running_cv_.wait(lock);
}
}
bool AsyncSchedulingNet::isInlineTask(int parent_id, int child_id) const {
if (!options_.use_dfs_scheduling_) {
return false;
}
const auto* last_parent_op = lastTaskOp(parent_id);
const auto* first_child_op = firstTaskOp(child_id);
// check that we do not cross device boundary
return IsSameDevice(
last_parent_op->device_option(), first_child_op->device_option());
}
// schedule() is not supposed to throw, all exceptions in the ops are caught
// and reported in the end of the graph's execution, the full graph of tasks
// is expected to be scheduled
void AsyncSchedulingNet::schedule(int task_id, bool run_inline) noexcept {
if (!testAndSetScheduled(task_id)) {
return;
}
auto schedule_func = [this, task_id]() {
try {
if (success_) {
int stream_id = 0;
if (options_.streams_per_gpu_ > 1) {
try {
stream_id = stream(task_id);
} catch (const std::exception& e) {
C10_LOG_EVERY_MS(ERROR, 1000)
<< "Failed to select a stream: " << e.what();
}
}
if (!run(task_id, stream_id)) {
success_ = false;
}
}
if (options_.report_stats_) {
try {
auto last_op_id = lastTaskOpId(task_id);
auto* last_op = lastTaskOp(task_id);
if (last_op->device_option().device_type() == PROTO_CPU &&
last_op->HasAsyncPart()) {
last_op->event().SetCallback([this, last_op_id] {
counters_.AddPerOpAsyncEndTime(last_op_id);
});
}
} catch (const std::exception& e) {
C10_LOG_EVERY_MS(ERROR, 1000)
<< "Failed to report operator stats: " << e.what();
}
}
for (auto child_id : children(task_id)) {
int parent_count = updateParentCount(child_id);
if (parent_count == 0) {
// Schedule a child if:
// - there is failure, we skip an op execution and finish the job
// - forced scheduling though always_schedule_child_
// - finish_chain_ is set, in this case parents are
// guaranteed to be finished
// - in all other cases, check parents with canSchedule
if (!success_ || options_.always_schedule_child_ ||
options_.finish_chain_ || canSchedule(child_id)) {
// if DFS scheduling is enabled, run children inline,
// ignore DFS scheduling in callbacks
schedule(child_id, isInlineTask(task_id, child_id));
} else {
bool parent_failed = false;
bool parent_needs_polling = false;
std::vector<int> parents_with_callback;
for (auto parent_id : parents(child_id)) {
auto& parent_event = event(parent_id);
auto parent_status = parent_event.Query();
if (parent_status == EventStatus::EVENT_FAILED) {
parent_failed = true;
break;
} else if (parent_status == EventStatus::EVENT_SCHEDULED) {
// parent is not finished yet, check if this is blocking us
// from scheduling a child
if (!canSchedule(parent_id, child_id)) {
// we can't schedule a child because of this parent,
// check if parent supports callback
if (parent_event.SupportsCallback()) {
parents_with_callback.push_back(parent_id);
} else {
parent_needs_polling = true;
break;
}
}
} else if (parent_status != EventStatus::EVENT_SUCCESS) {
VLOG(1) << "Unexpected parent task state: " << parent_status
<< ", task id: " << child_id
<< ", parent task id: " << parent_id;
parent_failed = true;
break;
}
}
if (parent_failed) {
// one of parents failed, set failure flag and wrap up execution
success_ = false;
schedule(child_id, isInlineTask(task_id, child_id));
} else if (parent_needs_polling) {
// some parents are blocking us from scheduling a child and don't
// support callbacks, using polling
const auto& child_device_option =
event(child_id).GetDeviceOption();
pool(child_device_option)
// NOLINTNEXTLINE(modernize-avoid-bind)
->run(std::bind(
&AsyncSchedulingNet::pollAndSchedule, this, child_id));
} else if (!parents_with_callback.empty()) {
// some parents are blocking us from scheduling a child and they
// support callbacks
for (auto parent_id : parents_with_callback) {
// NOLINTNEXTLINE(modernize-avoid-bind)
event(parent_id).SetCallback(std::bind(
&AsyncSchedulingNet::parentCallback, this, parent_id));
}
} else {
// we're ready to schedule a child
schedule(child_id, isInlineTask(task_id, child_id));
}
}
}
}
// In case of net's failure, make sure all pending tasks are finished
if (!success_) {
CancelAndFinishAsyncTasks();
}
// finishRun may cause waiters to wake up and destroy the net,
// before we call finishRun we need to make sure all other (finishing)
// tasks are done;
// Bumping and checking the counter after the task's job is done
auto tasks_num = tasksNum();
auto cur_processed_tasks = ++processed_tasks_num_;
if (cur_processed_tasks == tasks_num) {
finishRun();
}
} catch (const std::exception& e) {
// error of core scheduling and/or logic, will call terminate
LOG(FATAL) << "Unexpected error during graph scheduling run: "
<< e.what();
} catch (...) {
LOG(FATAL) << "Unknown error during graph scheduling run";
}
};
if (run_inline) {
schedule_func();
} else {
const auto& device_option = event(task_id).GetDeviceOption();
pool(device_option)->run(schedule_func);
}
}
void AsyncSchedulingNet::parentCallback(int parent_id) {
if (event(parent_id).Query() != EventStatus::EVENT_SUCCESS) {
success_ = false;
}
for (auto child_id : children(parent_id)) {
int parent_count = getParentCount(child_id);
if (parent_count == 0) {
if (!success_ || canSchedule(child_id)) {
schedule(child_id);
}
}
}
}
void AsyncSchedulingNet::pollAndSchedule(int task_id) {
bool parent_failed = false;
bool can_schedule = canSchedule(task_id, nullptr, &parent_failed);
if (parent_failed) {
success_ = false;
}
// schedule the task if:
// - parents are ready
// - we failed / cleanup started (no ops will run)
if (can_schedule || !success_ || parent_failed) {
schedule(task_id);
} else {
const auto& device_option = event(task_id).GetDeviceOption();
pool(device_option)
// NOLINTNEXTLINE(modernize-avoid-bind)
->run(std::bind(&AsyncSchedulingNet::pollAndSchedule, this, task_id));
}
}
void AsyncSchedulingNet::finishRun() {
std::unique_lock<std::mutex> lock(running_mutex_);
// wait for scheduled ops and make sure all events are marked as finished
finalizeEvents();
if (options_.report_stats_) {
counters_.ReportRunEnd();
}
// notify observers and waiters
StopAllObservers();
running_ = false;
running_cv_.notify_all();
}
bool AsyncSchedulingNet::RunAsync() {
try {
std::unique_lock<std::mutex> lock(running_mutex_);
if (running_) {
LOG(ERROR) << "Detected concurrent runs";
return false;
}
running_ = true;
reset();
StartAllObservers();
tracing::startIter(tracer_);
if (options_.report_stats_) {
counters_.ReportRunStart();
}
} catch (const std::exception& e) {
LOG(ERROR) << "Exception while starting an async run: " << e.what();
finishRun();
throw;
} catch (...) {
LOG(ERROR) << "Exception while starting an async run: unknown error";
finishRun();
throw;
}
// schedule() is not expected to throw, at this moment all the initial tasks
// will be scheduled and the full graph of tasks will be executed
for (auto task_id = 0; task_id < tasksNum(); ++task_id) {
if (parents(task_id).empty()) {
schedule(task_id, options_.run_root_tasks_inline_);
}
}
if (tasksNum() == 0) {
finishRun();
}
if (options_.is_blocking_) {
Wait();
}
return true;
}
void AsyncSchedulingNet::Cancel() {
success_ = false;
NetBase::Cancel();
CancelAndFinishAsyncTasks();
}
void AsyncSchedulingNet::CancelAndFinishAsyncTasks() {
for (auto tid = 0; tid < tasksNum(); ++tid) {
if (event(tid).Query() == EventStatus::EVENT_SCHEDULED) {
// SetFinished may throw, e.g. when we call it on already finished
// event, and in some other cases (CUDA)
try {
lastTaskOp(tid)->CancelAsyncCallback();
// throw and catch exception to preserve stack trace
try {
throw AsyncNetCancelled();
} catch (const AsyncNetCancelled& e) {
event(tid).SetFinishedWithException(e.what());
}
} catch (const EnforceNotMet&) {
// ignore
}
}
}
}
AsyncSchedulingNet::~AsyncSchedulingNet() {
// NOLINTNEXTLINE(clang-analyzer-optin.cplusplus.VirtualCall)
Wait();
}
REGISTER_NET(async_scheduling, AsyncSchedulingNet);
} // namespace caffe2