-
Notifications
You must be signed in to change notification settings - Fork 8
/
YAlg3-2.tex
279 lines (227 loc) · 26.5 KB
/
YAlg3-2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
% To be compiled by XeLaTeX, preferably under TeX Live.
% LaTeX source for ``Yanqi Lake Lectures on Algebra'' Part III.
% Copyright 2019 李文威 (Wen-Wei Li).
% Permission is granted to copy, distribute and/or modify this
% document under the terms of the Creative Commons
% Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
% https://creativecommons.org/licenses/by-nc/4.0/
% To be included
\chapter{Primary decompositions}
We shall follow \cite[\S 3]{Eis95} and \cite[\S 8]{Mat80} closely.
\section{The support of a module}
Fix a ring $R$. For any $R$-module $M$ and $x \in M$, we define the \emph{annihilator} $\text{ann}_R(x) := \{ r \in R: rx=0 \}$; it is an ideal of $R$. Also define $\text{ann}_R(M) := \{r \in R: rM=0 \} = \bigcap_{x \in M} \text{ann}_R(x)$. \index{$\text{ann}_R(M), \text{ann}_R(x)$}
\begin{definition}\index{support}\index{SuppM@$\Supp(M)$}
The \emph{support} of an $R$-module $M$ is
\[ \Supp(M) := \left\{ \mathfrak{p} \in \Spec(R): M_{\mathfrak{p}} \neq 0 \right\}. \]
\end{definition}
Let us unwind the definition: $\mathfrak{p} \notin \Supp(M)$ means that every $x \in M$ maps to $0 \in M_{\mathfrak{p}}$, equivalently $\text{ann}_R(x) \not\subset \mathfrak{p}$. To test whether $\mathfrak{p} \notin \Supp(M)$, we only need to check the foregoing condition for $x$ ranging over a generating set of $M$.
\begin{proposition}
If $M$ is finitely generated then $\Supp(M) = V(\mathrm{ann}_R(M))$; in particular it is Zariski-closed in $\Spec(R)$.
\end{proposition}
\begin{proof}
Suppose $M = Rx_1 + \cdots + Rx_n$. Set $I_i := \text{ann}_R(x_i)$ and observe that $\bigcap_{i=1}^n I_i = \text{ann}_R(M)$. Then $\mathfrak{p} \in \Supp(M)$ if and only if $\mathfrak{p} \supset I_i$ for some $i$, that is, $\mathfrak{p} \in \bigcup_{i=1}^n V(I_i)$. To conclude, note that $V(I) \cup V(J) = V(IJ) = V(I \cap J)$ for any ideals $I, J \subset R$ (an easy exercise).
\end{proof}
Finite generation is needed in the result above. Consider the $\Z$-module $M := \bigoplus_{a \geq 1} \Z/p^a \Z$. Its support is $\{p\}$ but $\mathrm{ann}(M) = \{0\}$.
\begin{proposition}
For an exact sequence $0 \to M' \to M \to M'' \to 0$ we have $\Supp(M) = \Supp(M') \cup \Supp(M'')$. For arbitrary direct sums we have $\Supp(\bigoplus_i M_i) = \bigcup_i \Supp(M_i)$.
\end{proposition}
\begin{proof}
Again, we use the exactness of localization for the first assertion. For $\mathfrak{p} \in \Spec(R)$ we have an exact $0 \to M'_{\mathfrak{p}} \to M_{\mathfrak{p}} \to M''_{\mathfrak{p}} \to 0$, hence $M_{\mathfrak{p}} \neq 0$ if and only if $\mathfrak{p} \in \Supp(M') \cup \Supp(M'')$. The second assertion is obvious.
\end{proof}
From an $R$-module $M$, one can build a ``field of modules'' over $\Spec(R)$ by assigning to each $\mathfrak{p}$ the $R_{\mathfrak{p}}$-module $M_{\mathfrak{p}}$, and $\Supp(M)$ is precisely the subset of $M_{\mathfrak{p}}$ over which the field is non-vanishing. This is how the support arises in algebraic geometry. A more precise description will require the notion of quasi-coherent sheaves on schemes.
\begin{exercise}
Let $M$, $N$ be finitely generated $R$-modules. Show that $\Supp(M \dotimes{R} N) = \Supp(M) \cap \Supp(N)$. Hint: since localization commutes with $\otimes$, it suffices to prove that $M \dotimes{R} N \neq \{0\}$ when $M, N$ are both nonzero finitely generated modules over a local ring $R$. Nakayama's Lemma implies that $M \dotimes{R} \Bbbk$ and $\Bbbk \dotimes{R} N$ are both nonzero where $\Bbbk$ is the residue field of $R$. Now
\[ (M \dotimes{R} \Bbbk) \dotimes{\Bbbk} (\Bbbk \dotimes{R} N) \simeq M \dotimes{R} (\Bbbk \dotimes{\Bbbk} \Bbbk) \dotimes{R} N \simeq (M \dotimes{R} N) \dotimes{R} \Bbbk \]
is nonzero.
\end{exercise}
\section{Associated primes}
Throughout this section, $R$ will be a Noetherian ring.
\begin{definition}\index{associated prime}\index{$\text{Ass}(M)$}
A prime ideal $\mathfrak{p}$ is said to be an \emph{associated prime} of an $R$-module $M$ if $\text{ann}_R(x) = \mathfrak{p}$ for some $x \in M$; equivalently, $R/\mathfrak{p}$ embeds into $M$. Denote the set of associated primes of $M$ by $\text{Ass}(M)$.
\end{definition}
\begin{example}
For the $\Z$-module $M := \Z/n\Z$ with $n \in \Z_{> 1}$, one easily checks that $\text{Ass}(M)$ is the set of prime factors of $n$.
\end{example}
\begin{lemma}\label{prop:Ass-maximal}
Consider the set $\mathcal{S} := \{ \mathrm{ann}_R(x) : x \in M, \; x \neq 0 \}$ of ideals, partially ordered by inclusion. Every maximal element in $\mathcal{S}$ is prime.
\end{lemma}
\begin{proof}
Let $\mathfrak{p} = \text{ann}_R(x)$ be a maximal element of $\mathcal{S}$ and suppose $ab \in \mathfrak{p}$. If $b \notin \mathfrak{p}$, then
\[ bx \neq 0, \quad abx = 0, \quad R \neq \text{ann}_R(bx) \supset \text{ann}_R(x) = \mathfrak{p}. \]
Hence $a \in \text{ann}_R(bx) = \mathfrak{p}$ by the maximality of $\mathfrak{p}$ in $\mathcal{S}$.
\end{proof}
\begin{definition}\index{zero divisor}
Call $r \in R$ a \emph{zero divisor} on $M$ if $rx=0$ for some $x \in M \smallsetminus \{0\}$.
\end{definition}
\begin{theorem}\label{prop:Ass-properties}
Let $M$ be an $R$-module.
\begin{enumerate}[(i)]
\item We have $M = \{0\}$ if and only if $\mathrm{Ass}(M) = \emptyset$.
\item The union of all $\mathfrak{p} \in \mathrm{Ass}(M)$ equals the set of zero divisors on $M$.
\item For any multiplicative subset $S \subset R$, we have
\[ \mathrm{Ass}(M[S^{-1}]) = \left\{ \mathfrak{p}[S^{-1}] : \mathfrak{p} \in \mathrm{Ass}(M), \; \mathfrak{p} \cap S = \emptyset \right\} . \]
\item If $0 \to M' \to M \to M''$ is exact, then $\mathrm{Ass}(M') \subset \mathrm{Ass}(M) \subset \mathrm{Ass}(M') \cup \mathrm{Ass}(M'')$.
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{asparaenum}[(i)]
\item Clearly $\text{Ass}(\{0\}) = \emptyset$. If $M \neq 0$, the set $\mathcal{S}$ in Lemma \ref{prop:Ass-maximal} is then nonempty, hence contains a maximal element $\mathfrak{p}$ because $R$ is Noetherian; this yields $\mathfrak{p} \in \text{Ass}(M)$.
\item Elements of any $\mathfrak{p} \in \text{Ass}(M)$ are all zero divisors by the very definition of associated primes. Conversely, if $r \in \text{ann}_R(x)$ for some $x \in M \smallsetminus \{0\}$, there must exist some maximal element $\mathfrak{p}$ of $\mathcal{S}$ with $\mathfrak{p} \supset \text{ann}_R(x)$ as $R$ is Noetherian; so $\mathfrak{p}$ is the required associated prime containing $r$.
\item If $\mathfrak{p} \in \Spec(R)$, $\mathfrak{p} \cap S = \emptyset$ and there is some $R/\mathfrak{p} \hookrightarrow M$, then
\[ \{0\} \neq R[S^{-1}]/\mathfrak{p}[S^{-1}] \simeq (R/\mathfrak{p})[S^{-1}] \hookrightarrow M[S^{-1}] \]
by the exactness of localizations, hence $\mathfrak{p}[S^{-1}] \in \text{Ass}(M[S^{-1}])$. Conversely, every element of $\text{Ass}(M[S^{-1}])$ has the form $\mathfrak{p}[S^{-1}]$ for some $\mathfrak{p} \in \Spec(R)$ disjoint from $S$. Also recall that $\mathfrak{p}$ equals the preimage of $\mathfrak{p}[S^{-1}]$ under $R \to R[S^{-1}]$. There exist $x \in M$ and $s \in S$ such that $\mathfrak{p}[S^{-1}] = \text{ann}_{R[S^{-1}]}(x/s) = \text{ann}_{R[S^{-1}]}(x)$. Ideals in a Noetherian ring being finitely generated, we infer that $\exists t \in S$ with $\mathfrak{p} \subset \text{ann}_R(tx)$. It remains to show $\mathfrak{p} = \text{ann}_R(tx)$. If $rtx=0$ for some $r \in R$, then $r$ maps into $r/1 \in \mathfrak{p}[S^{-1}] = \text{ann}_{R[S^{-1}]}(x)$; thus $r \in \mathfrak{p}$.
\item It suffices to treat the second $\subset$. Suppose that $\mathfrak{p} \in \text{Ass}(M)$ and $R/\mathfrak{p} \simeq N$ for some submodule $N \subset M$. Identify $M'$ with $\Ker(M \to M'')$. If $M' \cap N = \{0\}$ then $R/\mathfrak{p} \simeq N \hookrightarrow M''$, so $\mathfrak{p} \in \text{Ass}(M'')$. If there exists $x \in M' \cap N \subset N$ with $x \neq 0$, then we have $\text{ann}_R(x) = \mathfrak{p}$ since $N \simeq R/\mathfrak{p}$ and $\mathfrak{p}$ is prime; in this case $\mathfrak{p} \in \text{Ass}(M')$.
\end{asparaenum}
\end{proof}
We remark that $0 \to M' \to M \to M'' \to 0$ being exact does not imply $\text{Ass}(M) = \text{Ass}(M') \cup \text{Ass}(M'')$. To see this, consider $R=\Z$ and $0 \to \Z \xrightarrow{p} \Z \to \Z/p\Z \to 0$ for some prime number $p$.
\begin{exercise}
Show that $\text{Ass}(M_1 \oplus M_2) = \text{Ass}(M_1) \cup \text{Ass}(M_2)$.
\end{exercise}
\begin{theorem}\label{prop:Supp-Ass}
For every $R$-module $M$ we have $\Supp(M) = \bigcup_{\mathfrak{p} \in \mathrm{Ass}(M)} V(\mathfrak{p})$, in particular $\mathrm{Ass}(M) \subset \Supp(M)$. Furthermore, every minimal element of $\Supp(M)$ with respect to inclusion is actually a minimal element of $\mathrm{Ass}(M)$.
\end{theorem}
\begin{proof}
For any prime $\mathfrak{q}$ we have $M_{\mathfrak{q}} \neq 0 \iff \text{Ass}(M_{\mathfrak{q}}) \neq \emptyset$, and the latter condition holds precisely when there exists $\mathfrak{p} \in \text{Ass}(M)$ with $\mathfrak{p} \cap (R \smallsetminus \mathfrak{q}) = \emptyset$, i.e. $\mathfrak{q} \supset \mathfrak{p}$. This proves the first assertion. The second assertion is a direct consequence.
\end{proof}
Observe that if $\mathfrak{p} \in \Supp(M)$, then $\mathfrak{q} \supset \mathfrak{p} \implies \mathfrak{q} \in \Supp(M)$: the reason is that
\begin{gather}\label{eqn:localization-in-stages}
M_{\mathfrak{p}} = (M_{\mathfrak{q}})_{\mathfrak{p}R_{\mathfrak{q}}}
\end{gather}
thus the occurrence of non-minimal elements in $\Supp(M)$ is unsurprising. In contrast, the non-minimal elements in $\text{Ass}(M)$ are somehow mysterious. These non-minimal associated primes are called \emph{embedded primes}. \index{embedded prime}
\begin{exercise}
Prove the formula \eqref{eqn:localization-in-stages} of ``localization in stages''.
\end{exercise}
Hereafter we impose finite generation on $M$. This implies $M$ is Noetherian.
\begin{theorem}
Let $M$ be a finitely generated $R$-module. There exists a chain $M = M_n \supset M_{n-1} \supset \cdots \supset M_0 = \{0\}$ of submodules such that for every $0 < i \leq n$, the subquotient $M_i/M_{i-1}$ is isomorphic to $R/\mathfrak{p}_i$ for some prime ideal $\mathfrak{p}_i$.
Furthermore we have $\mathrm{Ass}(M) \subset \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n \}$; in particular $\mathrm{Ass}(M)$ is a finite set.
\end{theorem}
\begin{proof}
Assume $M \supsetneq M_0 := \{0\}$. There exists $\mathfrak{p}_1 \in \text{Ass}(M)$ together with a submodule $M_1 \subset M$ isomorphic to $R/\mathfrak{p}_1$. Furthermore $\text{Ass}(M_1) = \text{Ass}(R/\mathfrak{p}_1) = \{ \mathfrak{p}_1\}$ as easily seen. Hence the Theorem \ref{prop:Ass-properties} entails $\text{Ass}(M) \subset \{\mathfrak{p}_1\} \cup \text{Ass}(M/M_1)$.
If $M_1 = M$ we are done. Otherwise we start over with $M/M_1$, finding $M_1 \subset M_2 \subset M$ with $M_2/M_1 \simeq R/\mathfrak{p}_2$ where $\mathfrak{p}_2 \in \text{Ass}_R(M/M_1)$, and so forth. This procedure terminates in finite steps since $M$ is Noetherian.
\end{proof}
\section{Primary and coprimary modules}
The classical framework of primary decompositions concerns ideals, but it is advantageous to allow modules here. As before, the ring $R$ is Noetherian.
\begin{definition}\index{coprimary module}\index{primary module}
An $R$-module $M$ is called \emph{coprimary} if $\text{Ass}(M)$ is a singleton. A submodule $N \subsetneq M$ is called a $\mathfrak{p}$-\emph{primary} submodule if $M/N$ is coprimary with associated prime $\mathfrak{p} \in \Spec(R)$.
\end{definition}
\begin{proposition}\label{prop:coprimary-locnil}
The following are equivalent for a nonzero $R$-module $M$.
\begin{enumerate}[(i)]
\item $M$ is coprimary;
\item for every zero divisor $r \in R$ for $M$ and every $x \in M$, there exists $n \geq 1$ such that $r^n x = 0$.
\end{enumerate}
\end{proposition}
The condition (ii) is usually called the local-nilpotency of $r$ on $M$. When $M = R/I$ for some ideal $I$, it translates into: all zero divisors of the ring $R/I$ are nilpotent.
\begin{proof}
(i) $\implies$ (ii): Suppose $\text{Ass}(M) = \{ \mathfrak{p}\}$ and $x \in M \smallsetminus \{0\}$. From $\emptyset \neq \text{Ass}(Rx) \subset \text{Ass}(M)$ we infer that $\text{Ass}(Rx) = \{\mathfrak{p}\}$, thus by Theorem \ref{prop:Supp-Ass} we see $V(\mathfrak{p}) = \Supp(Rx) = V(\text{ann}(Rx))$. Hence $\mathfrak{p} = \sqrt{\text{ann}(Rx)}$. This implies (ii) by the definition of $\sqrt{\hspace{5pt}}$.
(ii) $\implies$ (i): It is routine to check that
\[ \mathfrak{p} := \left\{ r \in R: \forall x \in M \; \exists n \geq 1, \; r^n x = 0 \right\} \]
is an ideal of $R$. For every $\mathfrak{q} \in \text{Ass}(M)$ there exists $x \in M$ with $\text{ann}_R(x) = \mathfrak{q}$. Every $r \in \mathfrak{p}$ has some power falling in $\mathfrak{q}$, thus $\mathfrak{p} \subset \mathfrak{q}$. Conversely, (ii) and Theorem \ref{prop:Ass-properties} imply $\mathfrak{q} = \text{ann}_R(x) \subset \mathfrak{p}$. From $\mathfrak{q}=\mathfrak{p}$ we conclude $M$ is coprimary with the unique associated prime $\mathfrak{p}$.
\end{proof}
\begin{exercise}[Classical definition of primary ideals]\label{ex:primary-ideal}
Let $I$ be a proper ideal of $R$. Show that $R/I$ is coprimary if and only if the following holds:
\[ \forall a,b \in R, \; (ab \in I) \wedge (a \notin I) \implies \exists n \geq 1, \; b^n \in I. \]
In this case we also say $I$ is a \emph{primary ideal} of $R$. Show that $\{\sqrt{I}\} = \text{Ass}(R/I)$ if $I$ is a primary ideal. Hint: apply Proposition \ref{prop:coprimary-locnil}.
\end{exercise}
\begin{exercise}\label{ex:maximal-primary}
Let $\mathfrak{m}$ be a maximal ideal of $R$. Show that every ideal $I \subsetneq R$ containing some power of $\mathfrak{m}$ is primary, and $\text{Ass}(R/I) = \{\mathfrak{m}\}$. Hint: show that $\mathfrak{m}$ is the only prime ideal containing $I = \text{ann}_R(R/I)$.
\end{exercise}
\begin{lemma}\label{prop:intersection-primary}
Let $\mathfrak{p} \in \Spec(R)$ and $N_1, N_2 \subset M$ are $\mathfrak{p}$-primary submodules. Then $N_1 \cap N_2$ is a $\mathfrak{p}$-primary submodule of $M$.
\end{lemma}
\begin{proof}
We have $M/N_1 \cap N_2 \hookrightarrow M/N_1 \oplus M/N_2$. Since $N_1 \cap N_2 \neq M$, we have
\[ \emptyset \neq \text{Ass}(M/N_1 \cap N_2) \subset \text{Ass}(M/N_1) \cup \text{Ass}(M/N_2) = \{\mathfrak{p}\} \]
by Theorem \ref{prop:Ass-properties}.
\end{proof}
\section{Primary decomposition: the main theorem}
We still assume $R$ Noetherian and fix a finitely generated $R$-module $M$.
\begin{theorem}[Lasker--Noether]\label{prop:primary-decomp}\index{primary decomposition}
Let $N \subsetneq M$ be an $R$-submodule. Then we can express $N$ as
\[ N = M_1 \cap \cdots \cap M_n, \]
for some $n \geq 1$ and primary $R$-submodules $M_i$, say with $\mathrm{Ass}(M/M_i) = \{\mathfrak{p}_i\}$ for $i = 1, \ldots, n$. Such a decomposition is called a \emph{primary decomposition} of $N$. We say it is \emph{irredundant} if none of the $M_i$ can be dropped, and \emph{minimal} if there is no such decomposition with fewer terms.
\begin{enumerate}[(i)]
\item We have $\mathrm{Ass}(M/N) \subset \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_n \}$, equality holds when the decomposition is irredundant.
\item If the decomposition is minimal, then for every $\mathfrak{p} \in \mathrm{Ass}(M/N)$ there exists a unique $1 \leq i \leq n$ with $\mathfrak{p} = \mathfrak{p}_i$; consequently $n = |\mathrm{Ass}(M/N)|$.
\item Consider a primary decomposition of $N$. Let $S \subset R$ be any multiplicative subset, and assume without loss of generality that $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ are the primes among $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n \}$ which are disjoint from $S$, then $m \geq 1 \iff N[S^{-1}] \subsetneq M[S^{-1}]$ and
\[ N[S^{-1}] = M_1[S^{-1}] \cap \cdots \cap M_m[S^{-1}] \]
is a primary decomposition of the $R[S^{-1}]$-submodule $N[S^{-1}] \subsetneq M[S^{-1}]$; this decomposition of $N[S^{-1}]$ is minimal if the one for $N$ is.
\end{enumerate}
\end{theorem}
Note that the ``irredundant'' condition in \cite[(8.D)]{Mat80} corresponds to minimality here. The rings whose ideals all have primary decompositions are called \emph{Laskerian rings}, thus part (i) of the Theorem says Noetherian implies Laskerian, but there exist non-Noetherian examples.
\begin{proof}
Establish the existence of primary decompositions first. Replacing $M$ by $M/N$, we may assume $N = \{0\}$ from the outset. We claim that
\begin{gather}\label{eqn:Lasker-Noether-aux}
\forall \mathfrak{p} \in \text{Ass}(M), \; \exists Q(\mathfrak{p}) \subset M, \;
\left\{ \begin{array}{l}
Q(\mathfrak{p}) \text{ is } \mathfrak{p}\text{-primary}, \\
\text{Ass}(Q(\mathfrak{p})) = \text{Ass}(M) \smallsetminus \{ \mathfrak{p} \}.
\end{array}\right.
\end{gather}
Granting this, $Q := \bigcap_{\mathfrak{p} \in \text{Ass}(M)} Q(\mathfrak{p})$ yields the required decomposition since $\text{Ass}(M)$ is finite and $\text{Ass}(Q) = \emptyset$.
Establish \eqref{eqn:Lasker-Noether-aux} as follows. Put $\Psi := \{ \mathfrak{p} \}$. By Zorn's Lemma\index{Zorn's Lemma} we get a maximal element $Q(\mathfrak{q})$ from the set
\[ \emptyset \neq \left\{ Q \subset M: \text{submodule}, \; \text{Ass}(Q) \subset \text{Ass}(M) \smallsetminus \Psi \right\} \]
which is partially ordered by inclusion (details omitted, and you may also use the Noetherian property of $M$). Since
\[ \text{Ass}(M) \subset \text{Ass}(M/Q(\mathfrak{p})) \cup \text{Ass}(Q(\mathfrak{p})), \]
it suffices to show $\text{Ass}(M/Q(\mathfrak{p})) \subset \Psi$. Let $\mathfrak{q} \in \text{Ass}(M/Q(\mathfrak{p}))$ so that there exists $M \supset Q' \supset Q(\mathfrak{p})$ with $Q'/Q(\mathfrak{p}) \simeq R/\mathfrak{q}$. Since $\text{Ass}(Q') \subset \text{Ass}(Q(\mathfrak{p})) \cup \{ \mathfrak{q} \}$, maximality forces $\mathfrak{q} \in \Psi$ (otherwise $\text{Ass}(Q') \subset \text{Ass}(M) \smallsetminus \Psi$), whence \eqref{eqn:Lasker-Noether-aux}. Now we turn to the properties (i) --- (iii).
\begin{asparaenum}[(i)]
\item The obvious embedding
\[ M/N \hookrightarrow \bigoplus_{i=1}^n M/M_i \]
together with Theorem \ref{prop:Ass-properties} yield $\text{Ass}(M/N) \subset \bigcup_{i=1}^n \text{Ass}(M/M_i) = \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_n \}$.
Now assume the given primary decomposition is irredundant, we have
\begin{align*}
\{0\} & \neq \frac{M_2 \cap \cdots \cap M_n}{N} = \frac{M_2 \cap \cdots \cap M_n}{M_1 \cap (M_2 \cap \cdots \cap M_n)} \\
& \simeq \frac{M_1 + M_2 \cap \cdots \cap M_n}{M_1} \hookrightarrow M/M_1.
\end{align*}
Thus $\text{Ass}(M/N)$ contains $\text{Ass}((M_2 \cap \cdots \cap M_n)/N) = \{\mathfrak{p}_1\}$. Same for $\mathfrak{p}_2, \ldots, \mathfrak{p}_n$.
\item Suppose $N = M_1 \cap \cdots \cap M_n$ is an irredundant primary decomposition, so that $\text{Ass}(M/N) = \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_n \}$. If $\mathfrak{p}_i = \mathfrak{p}_j$ for some $1 \leq i \neq j \leq n$, Lemma \ref{prop:intersection-primary} will imply that $M_i \cap M_j$ is primary, leading to a shorter primary decomposition. This is impossible when the primary decomposition is minimal.
\item Suppose $S \cap \mathfrak{p}_i = \emptyset$ (equivalently, $i \leq m$). By Theorem \ref{prop:Ass-properties} and the exactness of localization, $M_i[S^{-1}] \subset M[S^{-1}]$ will be $\mathfrak{p}_i[S^{-1}]$-primary. On the other hand $S \cap \mathfrak{p}_i \neq \emptyset$ implies $\text{Ass}((M/M_i)[S^{-1}]) = \emptyset$ by Theorem \ref{prop:Ass-properties}, thus $M[S^{-1}]/M_i[S^{-1}] = 0$. Since localization respects intersections, we obtain
\[ N[S^{-1}] = \bigcap_{i=1}^m M_i[S^{-1}]. \]
In particular $N[S^{-1}]$ is proper if and only if $m \geq 1$.
It remains to show $\text{Ass}(M[S^{-1}]/N[S^{-1}])$ has $m$ elements if the original primary decomposition is minimal. Indeed, that set is just $\{ \mathfrak{p}[S^{-1}] : \mathfrak{p} \in \text{Ass}(M/N), \; \mathfrak{p} \cap S = \emptyset \}$ by Theorem \ref{prop:Ass-properties}, which equals $\{ \mathfrak{p}_1[S^{-1}], \ldots, \mathfrak{p}_m[S^{-1}] \}$ (distinct) by (ii).
\end{asparaenum}
\end{proof}
A natural question arises: to what extent are minimal primary decompositions unique? For those $M_i$ whose associated primes are minimal in $\text{Ass}(M/N)$, the answer turns out to be positive.
\begin{corollary}\label{prop:p-primary-component}
Let $N = M_1 \cap \cdots \cap M_n$ be a minimal primary decomposition of $N \subsetneq M$. Suppose that $M_1$ is $\mathfrak{p}$-primary where $\mathfrak{p} := \mathfrak{p}_1$ is a minimal element in $\mathrm{Ass}(M/N)$, then $M_1$ equals the preimage of $N_{\mathfrak{p}}$ under $M \to M_{\mathfrak{p}}$. Call it the $\mathfrak{p}$-\emph{primary component} of $N$.
\end{corollary}
\begin{proof}
Recall the proof of Theorem \ref{prop:primary-decomp}, especially the part (iii); here we localize with respect to $S := R \smallsetminus \mathfrak{p}$. The minimality assumption entails
\[ N_{\mathfrak{p}} = M_{1, \mathfrak{p}} \subset M_{\mathfrak{p}}. \]
It remains to show that the preimage of $M_{1, \mathfrak{p}}$ under $M \to M_{\mathfrak{p}}$ equals $M_1$, in other words the injectivity of the natural map $M/M_1 \to (M/M_1)_{\mathfrak{p}} = M_{\mathfrak{p}}/M_{1, \mathfrak{p}}$. Indeed, $\bar{x} \in M/M_1$ maps to $0$ if and only if there exists $s \notin \mathfrak{p}$ with $s\bar{x}=0$, but Theorem \ref{prop:Ass-properties} implies that the zero divisors of $M/M_1$ must lie in $\mathfrak{p}$.
\end{proof}
It follows that the non-uniqueness of minimal primary decompositions can only arise from embedded primes in $\text{Ass}(M/N)$.
\section{Examples and remarks}
Primary decompositions are most often applied in the case $M = R$ and $N = I$ is a proper ideal. The goal is to express $I$ as an intersection of primary ideals. To begin with, let us take $R = \Z$. Observations:
\begin{itemize}
\item The primary ideals of $R$ take the form $(p)^n$, where $n \geq 1$ and $p$ is a prime number or zero. This may be deduced from Exercise \ref{ex:primary-ideal} or directly from definitions.
\item The irredundant primary decompositions of $\Z/n\Z$, for $n > 1$, corresponds to the factorization of $n$ into prime-powers. There are no embedded primes in this case; the irredundant primary decomposition is unique and automatically minimal.
\end{itemize}
\begin{exercise}
Justify the foregoing assertions.
\end{exercise}
\begin{figure}[h]
\centering \includegraphics[height=170pt]{ELasker.jpg} \\ \vspace{1em}
\begin{minipage}{0.7\textwidth}
\small Emanuel Lasker (1868--1941) first obtained the primary decomposition for finitely generated $\Bbbk$-algebras and the algebras of convergent power series in 1905. His method involves techniques from \emph{elimination theory}. His result is then generalized and rewritten by Emmy Noether in 1921, in which the ascending chain condition plays a pivotal role. Lasker is best known for being the World Chess Champion from 1894 to 1921. (Picture taken from \href{https://commons.wikimedia.org/w/index.php?curid=5676713}{Wikimedia Commons})
\end{minipage}
\end{figure}
Therefore one can regard primary decompositions as a generalization of factorization of integers, now performed on the level of ideals. The most important case is $R = \Bbbk[X_1, \ldots, X_n]$ (fix some field $\Bbbk$), as it is naturally connected to classical problems in algebraic geometry. Let us consider a simple yet non-trivial example from \cite[\S 3]{Eis95}.
\begin{example}
Take $R=\Bbbk[X,Y]$ and $I = (X^2, XY)$. The reader is invited to check that
\[ I = (X) \cap (X^2, XY, Y^2) = (X) \cap (X^2, Y). \]
Claim: this gives two minimal primary decompositions of $I$. The ideal $(X)$ is prime, hence primary. In fact, $(X^2, XY, Y^2) = (X,Y)^2$ and $(X^2, Y)$ are both primary ideals associated to the maximal ideal $(X, Y)$. This follows either by direct arguments or by Exercise \ref{ex:maximal-primary}, noting that $(X,Y)^2 = (X^2, XY, Y^2)$ is contained in $(X^2, Y)$. The embedded prime $(X,Y)$ is seen to be responsible non-uniqueness of primary decompositions.
To see the geometry behind, recall that $V(\mathfrak{a}) \cup V(\mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a} \cap \mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$, thus expressing $I$ as an intersection means breaking the corresponding geometric object into a union of simpler pieces. Also recall that for an ideal $I \subset \Bbbk[X,Y]$, the points in $\bigcap_{f \in I} \{f=0\}$ are in bijection with the maximal ideals lying over $I$, at least for $\Bbbk$ algebraically closed (Nullstellensatz). Thus we may interpret these primary decompositions as equalities among ``geometric objects'' embedded in $\Bbbk^2$:
\[ \left\{ X^2=0, XY=0 \right\} = \begin{cases} \left\{ X = 0 \right\} \cup \left\{X^2=XY=Y^2=0 \right\} \\ \left\{ X = 0 \right\} \cup \left\{ X^2=Y=0 \right\}. \end{cases} \]
\begin{enumerate}
\item The geometric object defined by $X=0$ inside $\Bbbk^2$ is certainly the $Y$-axis: the regular functions living on this space form the $\Bbbk$-algebra $\Bbbk[X,Y]/(X) = \Bbbk[Y]$.
\item The geometric object defined by $X^2=XY=Y^2=0$ looks ``physically'' like the origin $(0,0)$, but the $\Bbbk$-algebra of ``regular functions'' (in an extended sense) living on it equals $\Bbbk[X,Y]/(X^2,XY,Y^2)$: by restricting a polynomial function $f(X,Y)$ to this ``thickened point'', we see not only $f(0,0)$ but also $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$. In other words, we shall view $X^2=XY=Y^2=0$ as the first-order infinitesimal neighborhood of $(0,0) \in \Bbbk^2$.
\item In a similar vein, $X^2=Y=0$ physically defines $(0,0)$, but by restricting $f$ to that thickened point, we retrieve $f(0,0)$ as well as $\frac{\partial f}{\partial x}(0,0)$. Therefore we obtain the first-order infinitesimal neighborhood of $0$ inside the $X$-axis.
\end{enumerate}
Both decomposition says that we obtain the $Y$-axis together with first-order infinitesimal information at the origin $(0,0)$. This is also a nice illustration of the use of nilpotent elements in scheme theory.
\end{example}
\begin{example}[Symbolic powers]
Let $\mathfrak{p}$ be a prime ideal in a Noetherian ring $R$ and fix $n \geq 1$. Observe that $\mathfrak{p}$ is the unique minimal element in $\Supp(R/\mathfrak{p}^n) = V(\mathfrak{p}^n)$. By Theorem \ref{prop:Supp-Ass} $\mathfrak{p} \in \text{Ass}(R/\mathfrak{p}^n)$, so it makes sense to denote by $\mathfrak{p}^{(n)}$ the $\mathfrak{p}$-primary component (Corollary \ref{prop:p-primary-component}) of $\mathfrak{p}^n$, called the $n$-th \emph{symbolic power} of $\mathfrak{p}$. In general $\mathfrak{p}^{(n)} \supsetneq \mathfrak{p}^n$. For a nice geometric interpretation of symbolic powers due to Nagata and Zariski, we refer to \cite[\S 3.9]{Eis95}.
\end{example}
Getting primary decomposition of ideals in polynomial algebras is a non-trivial task. Thanks to the pioneers in computational commutative algebra, this can now achieved on your own computer, eg. by the open-source \href{http://www.sagemath.org}{SageMath} system.\index{SageMath}