-
Notifications
You must be signed in to change notification settings - Fork 8
/
YAlg3-8.tex
209 lines (184 loc) · 15.6 KB
/
YAlg3-8.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
% To be compiled by XeLaTeX, preferably under TeX Live.
% LaTeX source for ``Yanqi Lake Lectures on Algebra'' Part III.
% Copyright 2019 李文威 (Wen-Wei Li).
% Permission is granted to copy, distribute and/or modify this
% document under the terms of the Creative Commons
% Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
% https://creativecommons.org/licenses/by-nc/4.0/
% To be included
\chapter{Some aspects of Koszul complexes}
This lecture is a faithful replay of the relevant sections of \cite{Bour80} and \cite{Bour98}; the main aim here is to complete the proof of Theorem \ref{prop:regular-vs-depth}. In what follows, we work with a chosen ring $R$. We impose no Noetherian or finiteness conditions here.
\section{Preparations in homological algebra}
For any $R$-module $L$, denote its \emph{exterior algebra}\index{exterios algebra} over $R$ by
\[ \bigwedge L := \bigoplus_{n \geq 0} \bigwedge^n L. \]
It is the quotient of the tensor algebra $T(L) = \bigoplus_{n \geq 0} (T^n(L) := L^{\otimes n})$ by the graded ideal generated by the pure tensors
\[ \cdots \otimes x \otimes x \otimes \cdots, \quad x \in L. \]
The multiplication operation in $\bigwedge L$ is written as $\wedge$. Note that $\bigwedge^0 L = T^0(L) = R$ by convention. The traditional notion of exterior algebras encountered in differential geometry is recovered when $\Q \subset R$.
Given $u \in \Hom_R(L, R)$, one can define the corresponding \emph{contractions} $i_u: \bigwedge^{n+1} L \to \bigwedge^n L$, given concretely as
\[ i_u (x_0 \wedge \cdots \wedge x_n) = \sum_{i=0}^n (-1)^i u(x_i) \cdot x_0 \wedge \cdots \widehat{x_i} \cdots \wedge x_n \]
where $\widehat{x_i}$ means $x_i$ is omitted. It is routine to check that $i_u$ satisfies $i_u \circ i_u = 0$, thereby giving rise to a chain complex.
\begin{definition}\label{def:Koszul-general}\index{Koszul complex}
Let $L$ and $u$ be as above. Define the corresponding \emph{Koszul complex} as $K_\bullet(u) := (\bigwedge^\bullet L, i_u)$. For any $R$-module $M$, put
\begin{align*}
K_\bullet(u; M) & := M \dotimes{R} K_\bullet(u), \\
K^\bullet(u; M) & := \Hom_A(K_\bullet(u), M)
\end{align*}\index{$K^\bullet(u; M)$}
which is naturally a chain (resp. cochain) complex in positive degrees; here one regards $M$ as a complex in degree zero. These definitions generalize to the case of any complex $M$, and are functorial in $M$.
\end{definition}
The reader might have encountered the following result in differential geometry.
\begin{proposition}[Homotopy formula]
For any $x \in L$ and $\omega \in \bigwedge^n L$, we have
\[ i_u (x \wedge \omega) + x \wedge (i_u(\omega)) = u(x) \omega. \]
\end{proposition}
\begin{proof}
Consider $\omega = x_1 \wedge \cdots \wedge x_n$. Put $x_0 := x$. The left-hand side equals
\[ \sum_{i=0}^n (-1)^i \cdot u(x_i) \cdots \wedge \widehat{x_i} \wedge \cdots \]
whereas the right-hand side equals
\[ \sum_{i=1}^n (-1)^{i+1} \cdot u(x_i) x_0 \wedge \cdots \wedge \widehat{x_i} \wedge \cdots. \]
The terms with a $\widehat{x_i}$ (non-existant --- hopefully this won't generate metaphysical issues) where $i > 0$ cancel out. We are left with $u(x_0) x_1 \wedge \cdots \wedge x_n = u(x) \omega$.
\end{proof}
Obviously, the same formula extends to all $\omega \in \bigwedge L$ by linearity.
\begin{proposition}\label{prop:Koszul-u-vanishing}
Set $\mathfrak{q} := u(L)$, which is an ideal of $R$. Then $\mathfrak{q}$ annihilates each homology (resp. cohomology) of $K_\bullet(u; M)$ (resp. $K^\bullet(u; M)$). Again, this generalizes to general complexes $M$.
\end{proposition}
\begin{proof}
Given $t \in \mathfrak{q}$, the homotopy formula implies that the endomorphism $\omega \mapsto t\omega$ of $K_\bullet(u)$ is homotopic to zero, hence so are the induced endomorphisms of $K_\bullet(u; M)$ and $K^\bullet(u; M)$ by standard homological algebra.
\end{proof}
\begin{proposition}\label{prop:Koszul-long-exact-sequence}
Suppose $L$ is projective over $R$ and $0 \to M' \to M \to M'' \to 0$ is exact. Then there is a natural short exact sequence of complexes
\[ 0 \to K^\bullet(u; M') \to K^\bullet(u; M) \to K^\bullet(u; M'') \to 0 \]
which gives rise to a long exact sequence of cohomologies of the Koszul complexes in question.
\end{proposition}
\begin{proof}
Standard. It suffices to note that $L$ is projective implies each graded piece $\bigwedge^n L$ of $\bigwedge L$ is projective as well.
\end{proof}
\begin{exercise}
Justify the assertion above concerning the projectivity of $\bigwedge^n L$. Hint: suppose $L$ is a direct summand of a free module $F$, show that $\bigwedge^n L$ is a direct summand of $\bigwedge^n F$ and $\bigwedge^n F$ is free.
\end{exercise}
Similar properties hold for the homological version when $L$ is flat over $R$. One needs the property that $\bigwedge^n L$ is flat if $L$ is.
\begin{exercise}
Prove the assertion above concerning flatness of $\bigwedge^n L$. Consult the proof in \cite[p.15]{Bour80} if necessary.
\end{exercise}
\section{Auxiliary results on depth}
We fix an ideal $I \subset R$.
\begin{proposition}\label{prop:depth-prod}
For every family $\{M_\beta\}_{\beta \in \mathcal{B}}$ of $R$-modules, we have
\[ \mathrm{depth}_I\left(\prod_\beta M_\beta \right) = \inf_\beta \mathrm{depth}_I(M_\beta). \]
\end{proposition}
\begin{proof}
This follows from $\Ext^n_R(R/I, \prod_i M_i) = \prod_{i \in I} \Ext^n_R(R/I, M_i)$, as is easily seen by taking a projective resolution of $R/I$ and using the fact the $\Hom_R$ preserves direct products in the second variable.
\end{proof}
\begin{remark}
By stipulation, the empty product is $0$, the zero object of the category $R\dcate{Mod}$. In parallel we define $\inf\emptyset := \infty$, so that Proposition \ref{prop:depth-prod} remains true in this case, since the zero module has infinite depth.
\end{remark}
\begin{proposition}
Suppose $N$ is an $R$-module annihilated by some $I^m$, where $m \geq 1$. Then $\Ext^i_R(N,M)=0$ whenever $i < \mathrm{depth}_I(M)$.
\end{proposition}
\begin{proof}
To show $\Ext^i_R(N,M)=0$ for $i < \text{depth}_I(M)$, we begin with the case $m=1$. This case follows by a dimension-shifting argument based on the short exact sequence
\[ 0 \to K \to (R/I)^{\oplus I} \to M \to 0, \]
together with induction on $i$ (note that $\Ext^{<0}_R(N,M)=0$ for trivial reasons). The case of general $m$ follows by a standard \emph{dévissage} using
\[ 0 \to JN \to N \to N/JN \to 0 \]
and the associated long exact sequence.
\end{proof}
\begin{lemma}\label{prop:depth-power}
Suppose $J$ is an ideal satisfying $J \supset I^m$ for some $m \geq 1$. Then $\mathrm{depth}_I(M) \leq \mathrm{depth}_J(M)$.
\end{lemma}
\begin{proof}
From the previous Proposition, we have $\Ext^i_R(R/J, M) = 0$ for $i < \text{depth}_I(M)$ since $I^m$ annihilates $R/J$. The assertion follows upon recalling the definition of depth.
\end{proof}
The following technical results will be invoked in the proof of Theorem \ref{prop:Koszul-depth}.
\begin{proposition}\label{prop:depth-vanishing-aux}
Let $C^\bullet$ be a cochain complex of $R$-modules such that $n \ll 0 \implies C^n = 0$. Let $h \in \Z$ such that for all integers $n \leq k \leq h$, the depth of $C^n$ with respect to $J_k := \mathrm{ann}(H^k(C^\bullet))$ is $> k-n$, then
\[ H^{\leq h}(C^\bullet)=0. \]
\end{proposition}
In what follows, we write $H^n = H^n(C^\bullet) = Z^n/B^n$ in the usual notation for homological algebra.
\begin{proof}
Assume on the contrary that there exists $k \leq h$ with $H^{< k} = 0$ whereas $H^k \neq 0$. Write $J = J_k$. As $J$ annihilates the nonzero $R$-module $H^k$, the criterion of depth-zero modules (Proposition \ref{prop:depth-zero}) implies that $\text{depth}_J(H^k) = 0$. By assumption $\text{depth}_J(C_k) > k-k = 0$, it follows that $\text{depth}_J(Z_k) > 0$ since $Z_k \subset C_k$, by applying the aforementioned criterion of depth-zero. From the short exact sequence
\[ 0 \to B^k \to Z^k \to H^k \to 0 \]
we deduce distinguished triangles in $D(R\dcate{Mod})$
\begin{gather*}
\mathcal{H}\text{om}(R/J, B^k) \to \mathcal{H}\text{om}(R/J, Z^k) \to \mathcal{H}\text{om}(R/J, H^k) \xrightarrow{+1}, \\
\mathcal{H}\text{om}(R/J, H^k)[-1] \to \mathcal{H}\text{om}(R/J, B^k) \to \mathcal{H}\text{om}(R/J, Z^k) \xrightarrow{+1}.
\end{gather*}
As the leftmost and rightmost terms of the last line are in $D^{\geq 1}(R\dcate{Mod})$, we see
\[ \text{depth}_J(B^k) \geq 1; \]
moreover, the piece $\Ext_R^0(R/J, Z^k) \to \Ext_R^0(R/J, H^k) \to \Ext_R^1(R/J, B^k)$ from the long exact sequence shows that $\text{depth}_J(B^k) = 1$. Now for $n < k$ we have short exact sequences
\[ 0 \to \underbracket{B^n}_{= Z^n} \to C^n \to B^{n+1} \to 0. \]
Again, one infers from the distinguished triangle
\[ \mathcal{H}\text{om}(R/J, B^{n+1})[-1] \to \mathcal{H}\text{om}(R/J, B^n) \to \mathcal{H}\text{om}(R/J, C^n) \xrightarrow{+1} , \]
the assumption $\text{depth}_J(C^n) > k-n$ and descending induction on $n$ that $n < k \implies \text{depth}_J(B_n) = k-n+1$. This is impossible since $B_{\ll 0} = 0$ has infinite depth.
\end{proof}
\begin{corollary}\label{prop:depth-vanishing}
Let $I \subset R$ be an ideal, $C^\bullet$ be a cochain complex with $n \ll 0 \implies C_n=0$, and $h \in \Z$. Suppose that $n \leq h$ implies $I \cdot H^n(C^\bullet) = 0$ and $\mathrm{depth}_I(C^n) > h-n$. Then $H^{\leq h}(C^\bullet) = 0$.
\end{corollary}
\begin{proof}
For $k \leq h$ we have $J_k := \text{ann}(H^k(C^\bullet)) \supset I$. Hence Lemma \ref{prop:depth-power} entails that
\[ n \leq k \leq h \implies \text{depth}_{J_k}(C^n) \geq \text{depth}_I(C^n) > h-n \geq k-n. \]
Now apply Proposition \ref{prop:depth-vanishing-aux}.
\end{proof}
\section{Koszul complexes and depth}
The simplest Koszul complexes are defined as follows. Given $x \in R$, we form the cochain complex in degrees $\{0,1\}$
\[ K(x) := \left[ R \xrightarrow{x} R \right]. \]
More generally, for any $R$-module $M$, viewed as a complex concentrated in degree zero, and a family $\mathbf{x} = (x_\alpha)_{\alpha \in \mathcal{A}}$ of element of $R$, we define the associated \emph{Koszul complex}\index{Koszul complex} as
\[ K^\bullet(\mathbf{x}; M) := K^\bullet(u; M), \]
where we take $u: R^{\oplus \mathcal{A}} \to R$ corresponding to $\mathbf{x}$ in Definition \ref{def:Koszul-general}. Unfolding definitions, we have \index{$K^\bullet(\mathbf{x};M)$}
\[ K^h(\mathbf{x}; M) = \begin{cases}
\Hom_R\left( \bigwedge^h (R^{\oplus \mathcal{A}}), M \right), & h \geq 0 \\
0, & h < 0.
\end{cases} \]
Therefore $K^h(\mathbf{x}; M)$ consists of families $m(\alpha_1, \ldots, \alpha_h) \in M$ that are alternating in the variables $\alpha_1, \ldots, \alpha_h \in \mathcal{A}$. The differential is
\begin{align*}
\partial^h: K^h(\mathbf{x}; M) & \longrightarrow K^{h+1}(\mathbf{x}; M) \\
m & \longmapsto \left[ (\alpha_0, \ldots, \alpha_h) \mapsto \sum_{j=0}^h (-1)^j x_{\alpha_j} \cdot m(\ldots, \widehat{\alpha_j}, \ldots) \right].
\end{align*}
We shall abbreviate the cohomologies of $K^\bullet(\mathbf{x}; M)$ as the \emph{Koszul cohomologies}.
When $\mathcal{A} = \{1, \ldots, n\}$ we revert to
\[ K^\bullet(x_1, \ldots, x_n; M) := M \otimes K(x_1) \otimes \cdots \otimes K(x_n) \]
with the well-known sign convention. Also note that $R^{\oplus \mathcal{A}}$ is projective, hence the Proposition \ref{prop:Koszul-long-exact-sequence} can always be applied to Koszul cohomologies.
Let $I$ denote the ideal generated by $\{x_\alpha: \alpha \in \mathcal{A} \}$. The reader is invited to verify that
\begin{itemize}
\item $K^\bullet\left( \mathbf{x}, \prod_{\beta \in \mathcal{B}} M_\beta \right) = \prod_{\beta \in \mathcal{B}} K^\bullet(\mathbf{x}; M_\beta)$ for any family $\{M_\beta\}_{\beta \in \mathcal{B}}$ of $R$-modules, and same for their cohomologies;
\item the $0$-th cohomology of $K^\bullet(\mathbf{x}; M)$ is $\Hom_R(R/I, M) = \{x \in M: Ix=0 \}$, the $I$-torsion part of $M$;
\item if $|A| = n$, the $n$-th cohomology of $K^\bullet(\mathbf{x}; M)$ is $M/IM$.
\end{itemize}
These facts will cast in our later arguments.
\begin{lemma}\label{prop:Koszul-coho-ann}
Each cohomology of $K^\bullet(\mathbf{x}; M)$ is annihilated by $I$.
\end{lemma}
\begin{proof}
Apply Proposition \ref{prop:Koszul-u-vanishing} by observing that $\mathfrak{q} = I$ in our setting.
\end{proof}
\begin{theorem}\label{prop:Koszul-depth}\index{depth}
Let $M$ be an $R$-module and $\mathbf{x} = \{x_\alpha \}_{\alpha \in \mathcal{A}}$ be a family of elements of $R$, which generate an ideal $I$ of $A$. Then $\mathrm{depth}_I(M)$ equals
\[ \inf \left\{n \geq 0: H^n(K^\bullet(\mathbf{x}; M)) \neq 0 \right\} \in \Z_{\geq 0} \sqcup \{\infty \} . \]
Consequently, if $I \subset R$ is an ideal generated by elements $x_1, \ldots, x_n$ and $IM \neq M$, then we have
\[ \mathrm{depth}_I(M) \leq n. \]
\end{theorem}
\begin{proof}
Let $d := \text{depth}_I(M)$. Since $K^h(\mathbf{x}; M)$ is a direct product of copies of $M$ (possibly the empty product $=0$), by Proposition \ref{prop:depth-prod} its depth equals either $d$ or $\infty$. Combining Lemma \ref{prop:Koszul-coho-ann} and Corollary \ref{prop:depth-vanishing} (with $h = d-1$), we see that $H^{< d}(K^\bullet(\mathbf{x}; M)) = 0$. It remains to show $H^d(K^\bullet(\mathbf{x}; M)) \neq 0$ provided that $d < \infty$, which we assume from now onwards.
The case $d=0$ is clear since there exists $\mathfrak{p} \in \text{Ass}(M) \cap V(I)$, therefore $R/\mathfrak{p} \hookrightarrow M$ and $\exists x \in M$ with $\mathfrak{p} x \supset Ix = \{0\}$, whence $H^0(K^\bullet(\mathbf{x}; M)) \neq 0$. Now suppose $d \in \Z_{\geq 1}$ and assume $H^d(K^\bullet(\mathbf{x}; M)) = 0$. Take a free resolution $F_\bullet \to R/I \to 0$ and put $C^\bullet := \Hom_R(F_\bullet, M)$, so that
\[ H^i(C^\bullet) \simeq \Ext^i_R(R/I, M), \quad i \geq 0. \]
Hence for $i < d$ we have short exact sequences
\[ 0 \to B^i \to C^i \to B^{i+1} \to 0 \]
as usual; recall $B^i, Z^i \subset C^i$. Note that each $C^i$ is a direct product of copies of $M$, hence $H^{\leq d}(K^\bullet(\mathbf{x}; C^i)) = 0$. Indeed, $H^{< d}(K^\bullet(\mathbf{x}; M))=0$ has been settled in the first step, whilst $H^d(K^\bullet(\mathbf{x}; M))$ is the hypothesis to be refuted. It then follows from the long exact sequence for Koszul cohomologies (Proposition \ref{prop:Koszul-long-exact-sequence}) that
\[ (s \leq d) \wedge (i < d) \implies H^s(K^\bullet(\mathbf{x}; B^{i+1})) \hookrightarrow H^{s+1}(K^\bullet(\mathbf{x}; B^i)). \]
Suppose $i < d$. As $B^0 = 0$, an iteration yields
\[ H^{d-i}(K^\bullet(\mathbf{x}; B^{i+1})) \hookrightarrow \cdots \hookrightarrow H^{d+1}(K^\bullet(\mathbf{x}; B^0)) = 0. \]
In particular, $i=d-1$ gives rise to $H^1(K^\bullet(\mathbf{x}; B^d)) = 0$. Hence the short exact sequence $0 \to B^d \to Z^d \to H^d \to 0$ (for $C^\bullet$) together with Proposition \ref{prop:Koszul-long-exact-sequence} give rise to
\[ H^0(K^\bullet(\mathbf{x}; Z^d)) \twoheadrightarrow H^0(K^\bullet(\mathbf{x}; H^d)). \]
As $H^d := H^d(C^\bullet) \simeq \Ext^d_R(R/I, M)$ is nonzero and annihilated by $I$, the right-hand side is nonzero. Hence $H^0(K^\bullet(\mathbf{x}; Z^d)) \neq 0$ and then $H^0(K^\bullet(\mathbf{x}; C^d)) \neq 0$, as the zeroth Koszul cohomology is nothing but the $I$-torsion part.
Finally, recall that $C^d \neq \{0\}$ is a direct product of copies of $M$, consequently
\[ H^0(K^\bullet(\mathbf{x}; M)) \neq 0. \]
However, this contradicts the earlier result that $H^{<d}(K^\bullet(\mathbf{x}; M))=0$ since $d \geq 1$.
\end{proof}
This yields an alternative characterization of depth. It also completes the proof of Theorem \ref{prop:regular-vs-depth} as promised in the previous lecture.
% Finalizing...
\vfill
\begin{figure}[h]
\centering \includegraphics[height=200pt]{WanFeng.jpg} \\ \vspace{1em}
\begin{minipage}{0.7\textwidth}\begin{center}
\small \fontspec{Noto Serif CJK SC} 《晚风》, 李桦, 木刻版画, 1963 年.
\end{center}\end{minipage}
\end{figure}
\vfill