forked from sxhxliang/BigGAN-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·45 lines (35 loc) · 1.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from parameter import *
from trainer import Trainer
# from tester import Tester
from data_loader import Data_Loader
from torch.backends import cudnn
from utils import make_folder
import glob
import os
def main(config):
# For fast training
cudnn.benchmark = True
config.n_class = len(glob.glob(os.path.join(config.image_path, '*/')))
print('number class:', config.n_class)
# Data loader
data_loader = Data_Loader(config.train, config.dataset, config.image_path, config.imsize,
config.batch_size, shuf=config.train)
# Create directories if not exist
make_folder(config.model_save_path, config.version)
make_folder(config.sample_path, config.version)
make_folder(config.log_path, config.version)
make_folder(config.attn_path, config.version)
print('config data_loader and build logs folder')
if config.train:
if config.model=='sagan':
trainer = Trainer(data_loader.loader(), config)
elif config.model == 'qgan':
trainer = qgan_trainer(data_loader.loader(), config)
trainer.train()
else:
tester = Tester(data_loader.loader(), config)
tester.test()
if __name__ == '__main__':
config = get_parameters()
print(config)
main(config)