-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL24Q3_OnlyALittleLucky.py
278 lines (212 loc) · 6.95 KB
/
L24Q3_OnlyALittleLucky.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Triple Gold Star
# Only A Little Lucky
# The Feeling Lucky question (from the regular homework) assumed it was enough
# to find the best-ranked page for a given query. For most queries, though, we
# don't just want the best page (according to the page ranking algorithm), we
# want a list of many pages that match the query, ordered from the most likely
# to be useful to the least likely.
# Your goal for this question is to define a procedure, ordered_search(index,
# ranks, keyword), that takes the same inputs as lucky_search from Question 5,
# but returns an ordered list of all the URLs that match the query.
# To order the pages, use the quicksort algorithm, invented by Sir Tony Hoare in
# 1959. Quicksort provides a way to sort any list of data, using an expected
# number of comparisons that scales as n log n where n is the number of elements
# in the list.
cache = {
'http://udacity.com/cs101x/urank/index.html': """<html>
<body>
<h1>Dave's Cooking Algorithms</h1>
<p>
Here are my favorite recipies:
<ul>
<li> <a href="http://udacity.com/cs101x/urank/hummus.html">Hummus Recipe</a>
<li> <a href="http://udacity.com/cs101x/urank/arsenic.html">World's Best Hummus</a>
<li> <a href="http://udacity.com/cs101x/urank/kathleen.html">Kathleen's Hummus Recipe</a>
</ul>
For more expert opinions, check out the
<a href="http://udacity.com/cs101x/urank/nickel.html">Nickel Chef</a>
and <a href="http://udacity.com/cs101x/urank/zinc.html">Zinc Chef</a>.
</body>
</html>
""",
'http://udacity.com/cs101x/urank/zinc.html': """<html>
<body>
<h1>The Zinc Chef</h1>
<p>
I learned everything I know from
<a href="http://udacity.com/cs101x/urank/nickel.html">the Nickel Chef</a>.
</p>
<p>
For great hummus, try
<a href="http://udacity.com/cs101x/urank/arsenic.html">this recipe</a>.
</body>
</html>
""",
'http://udacity.com/cs101x/urank/nickel.html': """<html>
<body>
<h1>The Nickel Chef</h1>
<p>
This is the
<a href="http://udacity.com/cs101x/urank/kathleen.html">
best Hummus recipe!
</a>
</body>
</html>
""",
'http://udacity.com/cs101x/urank/kathleen.html': """<html>
<body>
<h1>
Kathleen's Hummus Recipe
</h1>
<p>
<ol>
<li> Open a can of garbonzo beans.
<li> Crush them in a blender.
<li> Add 3 tablesppons of tahini sauce.
<li> Squeeze in one lemon.
<li> Add salt, pepper, and buttercream frosting to taste.
</ol>
</body>
</html>
""",
'http://udacity.com/cs101x/urank/arsenic.html': """<html>
<body>
<h1>
The Arsenic Chef's World Famous Hummus Recipe
</h1>
<p>
<ol>
<li> Kidnap the <a href="http://udacity.com/cs101x/urank/nickel.html">Nickel Chef</a>.
<li> Force her to make hummus for you.
</ol>
</body>
</html>
""",
'http://udacity.com/cs101x/urank/hummus.html': """<html>
<body>
<h1>
Hummus Recipe
</h1>
<p>
<ol>
<li> Go to the store and buy a container of hummus.
<li> Open it.
</ol>
</body>
</html>
""",
}
def get_page(url):
if url in cache:
return cache[url]
return ""
def get_next_target(page):
start_link = page.find('<a href=')
if start_link == -1:
return None, 0
start_quote = page.find('"', start_link)
end_quote = page.find('"', start_quote + 1)
url = page[start_quote + 1:end_quote]
return url, end_quote
def get_all_links(page):
links = []
while True:
url, endpos = get_next_target(page)
if url:
links.append(url)
page = page[endpos:]
else:
break
return links
def union(a, b):
for e in b:
if e not in a:
a.append(e)
def add_page_to_index(index, url, content):
words = content.split()
for word in words:
add_to_index(index, word, url)
def add_to_index(index, keyword, url):
if keyword in index:
index[keyword].append(url)
else:
index[keyword] = [url]
def lookup(index, keyword):
if keyword in index:
return index[keyword]
else:
return None
def crawl_web(seed): # returns index, graph of inlinks
tocrawl = [seed]
crawled = []
graph = {} # <url>, [list of pages it links to]
index = {}
while tocrawl:
page = tocrawl.pop()
if page not in crawled:
content = get_page(page)
add_page_to_index(index, page, content)
outlinks = get_all_links(content)
graph[page] = outlinks
union(tocrawl, outlinks)
crawled.append(page)
return index, graph
def compute_ranks(graph):
d = 0.8 # damping factor
numloops = 10
ranks = {}
npages = len(graph)
for page in graph:
ranks[page] = 1.0 / npages
for i in range(0, numloops):
newranks = {}
for page in graph:
newrank = (1 - d) / npages
for node in graph:
if page in graph[node]:
newrank = newrank + d * (ranks[node] / len(graph[node]))
newranks[page] = newrank
ranks = newranks
return ranks
# The idea of quicksort is quite simple:
# If the list has zero or one elements, it is already sorted.
# Otherwise, pick a pivot element, and split the list into two partitions: one
# contains all the elements equal to or lower than the value of the pivot
# element, and the other contains all the elements that are greater than the
# pivot element. Recursively sort each of the sub-lists, and then return the
# result of concatenating the sorted left sub-list, the pivot element, and the
# sorted right sub-list.
# For simplicity, use the first element in the list as your pivot element (this
# is not usually a good choice, since it means if the input list is already
# nearly sorted, the actual work will be much worse than expected).
def ordered_search(index, ranks, keyword):
if keyword not in index:
return None
else:
rankings =[]
for i in ranked_ranks: #searches the ordered list, most popular downwards
if i in index[keyword]:
rankings.append(i)
return rankings
# Here are some example showing what ordered_search should do:
# Observe that the result list is sorted so the highest-ranking site is at the
# beginning of the list.
# Note: the intent of this question is for students to write their own sorting
# code, not to use the built-in sort procedure.
index, graph = crawl_web('http://udacity.com/cs101x/urank/index.html')
ranks = compute_ranks(graph)
#list of rankings based on popularity
ranked_ranks = sorted(ranks, key=ranks.get, reverse=True)
print ordered_search(index, ranks, 'Hummus')
#>>> ['http://udacity.com/cs101x/urank/kathleen.html',
# 'http://udacity.com/cs101x/urank/nickel.html',
# 'http://udacity.com/cs101x/urank/arsenic.html',
# 'http://udacity.com/cs101x/urank/hummus.html',
# 'http://udacity.com/cs101x/urank/index.html']
print ordered_search(index, ranks, 'the')
#>>> ['http://udacity.com/cs101x/urank/nickel.html',
# 'http://udacity.com/cs101x/urank/arsenic.html',
# 'http://udacity.com/cs101x/urank/hummus.html',
# 'http://udacity.com/cs101x/urank/index.html']
print ordered_search(index, ranks, 'babaganoush')
#>>> None