-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_opti.m
111 lines (92 loc) · 3.39 KB
/
build_opti.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
function nlp = build_opti(nseg,t,A,e,w)
%BUILD_OPTI Build the symbolic computational graph for optimization
tm = [t.^0; t.^1; t.^2; t.^3; t.^4]';
opti = casadi.Opti();
% -- 4th order spline coefficients
ax = opti.variable(5,nseg);
ay = opti.variable(5,nseg);
% -- Time point discretization for each segment
tp = opti.variable(nseg*(numel(t)-1));
% -- Slack variables for C1 continuity
sl = opti.variable(nseg-1);
wp_x = opti.parameter(nseg+1,1);
wp_y = opti.parameter(nseg+1,1);
x_lim = opti.parameter();
y_lim = opti.parameter();
t_lim = opti.parameter();
v_max = opti.parameter();
a1 = opti.parameter();
a2 = opti.parameter();
% -- Assure C0 continuity of spline
for i = 1:nseg
opti.subject_to( ax(1,i) == wp_x(i) );
opti.subject_to( ay(1,i) == wp_y(i) );
opti.subject_to( sum(ax(:,i)) == wp_x(i+1) );
opti.subject_to( sum(ay(:,i)) == wp_y(i+1) );
end
% -- Soft C1 continuity
for i = 1:nseg-1
opti.subject_to( ax(2,i+1)-(0:4)*ax(:,i)+sl(i) == 0 );
opti.subject_to( ay(2,i+1)-(0:4)*ay(:,i)+sl(i) == 0 );
end
opti.subject_to( { sl(:) >= 0, sl(:) <= 0.05 } );
% -- Constrain trajectory to flow domain
x_vals = tm*ax; y_vals = tm*ay;
opti.subject_to( { x_vals(:) >= 0, x_vals(:) <= x_lim } );
opti.subject_to( { y_vals(:) >= 0, y_vals(:) <= y_lim } );
% -- Constrain velocity
% `x_vals` and `y_vals` are matrices, each column representing the
% corresponding coordinates. First element in (i+1)th column and last
% element in ith column are equal. We get rid of the last row and
% flatten the resulting truncated matrix for imposing velocity
% constriant
x_vals_flat = x_vals(1:end-1,:);
x_vals_flat = x_vals_flat(:);
y_vals_flat = y_vals(1:end-1,:);
y_vals_flat = y_vals_flat(:);
for i = 2:length(tp)
v = sum_square([(x_vals_flat(i)-x_vals_flat(i-1))/(tp(i)-tp(i-1));
(y_vals_flat(i)-y_vals_flat(i-1))/(tp(i)-tp(i-1))]);
opti.subject_to( { v >= 0, v <= v_max^2 } );
end
% -- Constrain timepoints to be positive and monotonically increasing
opti.subject_to( tp(:) >= 0 );
for i = 1:length(tp)-1
opti.subject_to( tp(i) < tp(i+1) );
end
opti.subject_to( tp(end) <= t_lim );
% -- Compute actuation energy cost
E = 0;
for i = 2:length(tp)
v = [(x_vals_flat(i)-x_vals_flat(i-1))/(tp(i)-tp(i-1));
(y_vals_flat(i)-y_vals_flat(i-1))/(tp(i)-tp(i-1))];
[~,~,~,ux_,uy_] = double_gyre(x_vals_flat(i),y_vals_flat(i),tp(i),A,e,w);
E = E + sum_square(v - [ux_; uy_]);
end
obj = a1*tp(end) + a2*E;
opti.minimize( obj );
opti.set_initial(tp, linspace(0,100,numel(tp))');
opti.set_initial(ax, ones(5,nseg));
opti.set_initial(ay, ones(5,nseg));
options = struct;
options.ipopt.tol = 0.05;
options.ipopt.print_level = 4;
opti.solver('ipopt',options);
nlp = struct;
nlp.opti = opti;
nlp.vars.ax = ax;
nlp.vars.ay = ay;
nlp.vars.tp = tp;
nlp.vars.sl = sl;
nlp.params.wp_x = wp_x;
nlp.params.wp_y = wp_y;
nlp.params.x_lim = x_lim;
nlp.params.y_lim = y_lim;
nlp.params.t_lim = t_lim;
nlp.params.v_max = v_max;
nlp.params.a1 = a1;
nlp.params.a2 = a2;
nlp.traj_x = x_vals_flat;
nlp.traj_y = y_vals_flat;
nlp.obj = obj;
end