diff --git a/docs/01-llm-intro/06-function-call.mdx b/docs/01-llm-intro/06-function-call.mdx new file mode 100644 index 0000000..d3ded37 --- /dev/null +++ b/docs/01-llm-intro/06-function-call.mdx @@ -0,0 +1,6 @@ +--- +title: "工具调用(Function Call)" +--- + + +sdfsdf diff --git a/docs/02-prompt-engineering/02-chain-of-thought/03-concise-cot.md b/docs/02-prompt-engineering/02-chain-of-thought/03-concise-cot.md new file mode 100644 index 0000000..fa8d449 --- /dev/null +++ b/docs/02-prompt-engineering/02-chain-of-thought/03-concise-cot.md @@ -0,0 +1,17 @@ +--- +title: "Concise Thought" +--- + + +CoT 的长度通常是会影响整体时延,有的项目当中会直接把 CoT 的策略给删除,可是这个通常会影响模型的效果. + +此时你可以有两种策略: +1. 增加你的训练数据 +2. 缩短你的 CoT 长度进而提升模型的效果. + +第一种方法就非常的简单粗暴,不过很可能会破坏你这个模型的通用 chat 能力,除非你的目的就是要构建一个垂类的不具备很强通用 chat 能力的模型。 + + +## 参考文章 + +* [[1] Concise Thoughts: Impact of Output Length on LLM Reasoning and Cost](h是) diff --git a/docs/03-agent-application/how-does-openai-o1-train.mdx b/docs/03-agent-application/how-does-openai-o1-train.mdx new file mode 100644 index 0000000..bd843a8 --- /dev/null +++ b/docs/03-agent-application/how-does-openai-o1-train.mdx @@ -0,0 +1,9 @@ +--- +title: "OpenAI 的O1 模型是如何训练的" +--- + +或许训练的模式是这个样子: + +![](./imgs/strawberry-training-mode.gif) + +> 此图片来源于外网一位大佬 diff --git a/docs/03-agent-application/imgs/strawberry-training-mode.gif b/docs/03-agent-application/imgs/strawberry-training-mode.gif new file mode 100644 index 0000000..4b9b86c Binary files /dev/null and b/docs/03-agent-application/imgs/strawberry-training-mode.gif differ