在[“线性回归的简洁实现”]一节中,我们通过init
模块来初始化模型的全部参数。我们也介绍了访问模型参数的简单方法。本节将深入讲解如何访问和初始化模型参数,以及如何在多个层之间共享同一份模型参数。
我们先定义一个与上一节中相同的含单隐藏层的多层感知机。我们依然使用默认方式初始化它的参数,并做一次前向计算。
import tensorflow as tf
import numpy as np
print(tf.__version__)
2.0.0
net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Flatten())
net.add(tf.keras.layers.Dense(256,activation=tf.nn.relu))
net.add(tf.keras.layers.Dense(10))
X = tf.random.uniform((2,20))
Y = net(X)
Y
<tf.Tensor: id=62, shape=(2, 10), dtype=float32, numpy=
array([[ 0.15294254, 0.0355227 , 0.05113338, 0.06625789, 0.12223213,
-0.5954561 , 0.38035268, -0.17244355, 0.6725004 , 0.00750941],
[ 0.12288147, -0.2162356 , -0.02103446, 0.14871466, 0.10256162,
-0.57710034, 0.22278625, -0.21283135, 0.52407515, -0.1426214 ]],
dtype=float32)>
对于使用Sequential
类构造的神经网络,我们可以通过weights属性来访问网络任一层的权重。回忆一下上一节中提到的Sequential
类与tf.keras.Model
类的继承关系。对于Sequential
实例中含模型参数的层,我们可以通过tf.keras.Model
类的weights
属性来访问该层包含的所有参数。下面,访问多层感知机net
中隐藏层的所有参数。索引0表示隐藏层为Sequential
实例最先添加的层。
net.weights[0], type(net.weights[0])
(<tf.Variable 'sequential/dense/kernel:0' shape=(20, 256) dtype=float32, numpy=
array([[-0.07852519, -0.03260126, 0.12601742, ..., 0.11949158,
0.10042094, -0.10598273],
[ 0.03567271, -0.11624913, 0.04699135, ..., -0.12115637,
0.07733515, 0.13183317],
[ 0.03837337, -0.11566538, -0.03314627, ..., -0.10877015,
0.09273799, -0.07031895],
...,
[-0.03430544, -0.00946991, -0.02949082, ..., -0.0956497 ,
-0.13907745, 0.10703176],
[ 0.00447187, -0.07251608, 0.08081181, ..., 0.02697623,
0.05394638, -0.01623751],
[-0.01946831, -0.00950103, -0.14190955, ..., -0.09374787,
0.08714674, 0.12475103]], dtype=float32)>,
tensorflow.python.ops.resource_variable_ops.ResourceVariable)
我们在[“数值稳定性和模型初始化”]一节中描述了模型的默认初始化方法:权重参数元素为[-0.07, 0.07]之间均匀分布的随机数,偏差参数则全为0。但我们经常需要使用其他方法来初始化权重。在下面的例子中,我们将权重参数初始化成均值为0、标准差为0.01的正态分布随机数,并依然将偏差参数清零。
class Linear(tf.keras.Model):
def __init__(self):
super().__init__()
self.d1 = tf.keras.layers.Dense(
units=10,
activation=None,
kernel_initializer=tf.zeros_initializer(),
bias_initializer=tf.zeros_initializer()
)
self.d2 = tf.keras.layers.Dense(
units=1,
activation=None,
kernel_initializer=tf.ones_initializer(),
bias_initializer=tf.ones_initializer()
)
def call(self, input):
output = self.d1(input)
output = self.d2(output)
return output
net = Linear()
net(X)
net.get_weights()
[array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32),
array([[1.],
[1.],
[1.],
[1.],
[1.],
[1.],
[1.],
[1.],
[1.],
[1.]], dtype=float32),
array([1.], dtype=float32)]
可以使用tf.keras.initializers
类中的方法实现自定义初始化。
def my_init():
return tf.keras.initializers.Ones()
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(64, kernel_initializer=my_init()))
Y = model(X)
model.weights[0]
<tf.Variable 'sequential_1/dense_4/kernel:0' shape=(20, 64) dtype=float32, numpy=
array([[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
...,
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]], dtype=float32)>