forked from cvxr/TFOCS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
solver_sDantzig_W.m
127 lines (117 loc) · 3.65 KB
/
solver_sDantzig_W.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
function varargout = solver_sDantzig_W( A,W, b, delta, mu, x0, z0, opts, varargin )
% SOLVER_SDANTZIG_W Weighted Dantzig selector problem. Uses smoothing.
%[ x, out, opts ] = solver_sDantzig_W( A,W, b, delta, mu, x0, z0, opts )
% Solves the smoothed Dantzig
% minimize norm(W*x,1) + (1/2)*mu*norm(x-x0).^2
% s.t. norm(D.*(A'*(A*x-b)),Inf) <= delta
% by constructing and solving the composite dual
%
% A and W must be a linear operator, b must be a vector, and delta and mu
% must be positive scalars. Initial points x0 and z0 are optional.
% The standard calling sequence assumes that D=I. To supply a scaling,
% pass the cell array { A, D } instead of A. D must either be a scalar,
% a vector of weights, or a linear operator.
%
% Pass in the options "normA2" and "normW2" (which are ||A||^2
% and ||W||^2 respectively) for best efficiency.
%
% See also solver_sDantzig
% Supply default values
error(nargchk(5,9,nargin));
if nargin < 6, x0 = []; end
if nargin < 7, z0 = []; end
if nargin < 8, opts = []; end
if isfield(opts,'solver')
svr = opts.solver;
opts = rmfield(opts,'solver');
if isfield(opts,'alg') && ~isempty(opts.alg)
disp('Warning: conflictiong options for the algorithm');
else
% if specified as "solver_AT", truncate:
s = strfind( svr, '_' );
if ~isempty(s), svr = svr(s+1:end); end
opts.alg = svr;
end
end
% Extract the linear operators
D = [];
if isa( A, 'cell' ),
if length(A) > 1, D = A{2}; end
A = A{1};
end
if isempty(D),
D = @(x)x;
elseif isa( D, 'double' ),
D = @(x)D.*x;
end
if isa( A, 'double' ),
% if "A" is not too rectangular, it is probably more efficient
% to compute A'*A once at the beginning and store it.
mn = min(size(A));
mx = max(size(A));
if mn >= .7*mx && mx < 1e5
AA = @(y,mode)linear_DS_AA( D, A'*A, y, mode );
A = linop_matrix(A);
else
A = linop_matrix(A);
AA = @(y,mode)linear_DS( D, A, y, mode );
end
else
AA = @(y,mode)linear_DS( D, A, y, mode );
end
% Need to estimate the norms of A*A' and W*W' in order to be most efficient
if isfield( opts, 'noscale' ) && opts.noscale,
normA2 = 1; normW2 = 1;
else
normA2 = []; normW2 = [];
if isfield( opts, 'normA2' ),
normA2 = opts.normA2;
opts = rmfield( opts, 'normA2' );
end
if isfield( opts, 'normW2' ),
normW2 = opts.normW2;
opts = rmfield( opts, 'normW2' );
end
end
if isempty( normA2 ),
normA2 = linop_normest( A ).^2;
end
if isempty( normW2 ),
normW2 = linop_normest( W ).^2;
end
% Call TFOCS
proxScale = sqrt( normW2 / normA2 );
prox = { prox_l1( delta ); proj_linf(proxScale) };
W = linop_compose( W, 1/proxScale);
affineF = {AA, -D(A(b,2)); W, 0 };
[varargout{1:max(nargout,1)}] = ...
tfocs_SCD( [], affineF, prox, mu, x0, z0, opts, varargin{:} );
% Implements x -> D*A'*A*x and its adjoint if A is a linop
function y = linear_DS( D, A, y, mode )
switch mode,
case 0,
y = A([],0);
if iscell( y ),
y = { y{1}, y{1} };
else
y = { [y(2),1], [y(2),1] };
end
case 1, y = D(A(A(y,1),2));
case 2, y = A(A(D(y),1),2);
end
function y = linear_DS_AA( D, AA, y, mode )
% similar to above, but expects AA to be an explicit Hermitian matrix
switch mode,
case 0,
y = size(AA);
if iscell( y ),
y = { y{1}, y{1} };
else
y = { [y(2),1], [y(2),1] };
end
case 1, y = D(AA*y);
case 2, y = AA*D(y);
end
% TFOCS v1.3 by Stephen Becker, Emmanuel Candes, and Michael Grant.
% Copyright 2013 California Institute of Technology and CVX Research.
% See the file LICENSE for full license information.