-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathinference.py
59 lines (47 loc) · 1.36 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from mona.nn.model import Model
from mona.text import word_to_index
from mona.datagen.datagen import generate_image
from mona.datagen.pre_process import pre_process
net = Model(len(word_to_index))
name = "model_training.pt"
net.load_state_dict(torch.load(f"models/{name}"))
net.eval()
def predict(image_name):
im = Image.open(f"data/test/{image_name}")
im = pre_process(im)
im.save("test.png")
tensor = T.ToTensor()(im)
tensor.unsqueeze_(0)
pred = net.predict(tensor)
return pred[0]
names = [
"1.jpg", "2.png", "3.png", "4.png", "5.png",
"6.png", "7.png", "8.png", "9.png", "10.png",
"11.png", "12.png", "13.png", "14.jpg", "15.png",
"16.jpg", "17.png", "18.png", "19.png", "20.png",
"21.png", "22.png", "23.png", "24.png", "25.png",
"sample_0.png",
]
# names = ["25.png"]
for name in names:
result = predict(name)
print(f"{name}: {result}")
# wrong = 0
# wrong_list = []
# for i in range(64):
# image, label = generate_image()
# image = T.ToTensor()(image)
# image.unsqueeze_(dim=0)
# pred = net.predict(image)
# if pred[0] != label:
# wrong += 1
# wrong_list.append((pred[0], label))
# print(pred[0], label)
#
# print("wrong:", wrong)
# for pred, label in wrong_list:
# print(pred, label)