-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathonlineval.py
105 lines (84 loc) · 3.58 KB
/
onlineval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Online validation w/ lots of samples w/o data generation
# 一边生成验证数据一边验证,可以进行超大规模验证而不需要担心内存/磁盘不够。
import torch
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from PIL import ImageFont
from mona.text import get_lexicon
from mona.nn.model2 import Model2
from mona.datagen.datagen import DataGen
from mona.config import config
from mona.nn import predict as predict_net
import numpy as np
from PIL import Image
import sys
import time
import argparse
device = "cuda" if torch.cuda.is_available() else "cpu"
lexicon = get_lexicon(config["model_type"])
if config["model_type"] == "Genshin":
fonts = [ImageFont.truetype("./assets/genshin.ttf", i) for i in range(15, 90)]
elif config["model_type"] == "StarRail":
fonts = [ImageFont.truetype("./assets/starrail.ttf", i) for i in range(15, 90)]
elif config["model_type"] == "WutheringWaves":
fonts = [ImageFont.truetype("./assets/wuthering_waves/ARFangXinShuH7GBK-HV.ttf", i) for i in range(15, 90)]
datagen = DataGen(config, fonts, lexicon)
class MyOnlineDataSet(Dataset):
def __init__(self, size: int):
self.size = size
def __len__(self):
return self.size
def __getitem__(self, index):
im, text = datagen.generate_image()
tensor = transforms.ToTensor()(im)
return tensor, text
if __name__ == "__main__":
# crnn
# net = Model(len(index_to_word)).to(device)
# svtr
net = Model2(lexicon.lexicon_size(), 1).to(device)
# net = Model2(len(index_to_word), 1, hidden_channels=128, num_heads=4).to(device)
parser = argparse.ArgumentParser(
description='Validate a model using online generated data from datagen')
parser.add_argument('model_file', type=str,
help='The model file. e.g. model_training.pt')
args = parser.parse_args()
model_file_path = args.model_file
print(f"Validating {model_file_path}")
net.load_state_dict(torch.load(
model_file_path, map_location=torch.device(device), weights_only=True))
batch_size = 32
max_plot_incorrect_sample = 100
num_samples = 1000000
validate_dataset = MyOnlineDataSet(num_samples)
validate_loader = DataLoader(
validate_dataset, batch_size=batch_size, num_workers=config["dataloader_workers"])
net.eval()
err = 0
total = 0
last_time = time.time()
with torch.no_grad():
for x, label in validate_loader:
x = x.to(device)
# print(label)
predict = predict_net(net, x, lexicon)
for i in range(len(label)):
pred = predict[i]
truth = label[i]
# if True:
if pred != truth:
print(f"\033[2K\r==== pred: {pred}, truth: {truth} ====")
# Save the incorrect samples
if err < max_plot_incorrect_sample:
arr = x.to('cpu')[i].squeeze()
im = Image.fromarray(np.uint8(arr * 255))
# im.show()
im.save(f"samples/err-sample-id{total+i}.png")
# Stats
err += sum([0 if predict[i] == label[i]
else 1 for i in range(len(label))])
total += len(label)
tput = int(total / (time.time() - last_time))
print(str.format("Tput {} sample/s, err rate {:.2e}. Tested {}, err {}",
tput, err / total, total, err), end='\r')
print(f"\nValidation result: {model_file_path} total {total} err {err}")