Skip to content

Latest commit

 

History

History
100 lines (75 loc) · 3.08 KB

README.md

File metadata and controls

100 lines (75 loc) · 3.08 KB

插入排序

先来看一个问题。一个有序的数组,我们往里面添加一个新的数据后,如何继续保持数据有序呢?很简单,我们只要遍历数组,找到数据应该插入的位置将其插入即可。

这是一个动态排序的过程,即动态地往有序集合中添加数据,我们可以通过这种方法保持集合中的数据一直有序。而对于一组静态数据,我们也可以借鉴上面讲的插入方法,来进行排序,于是就有了插入排序算法。

那么插入排序具体是如何借助上面的思想来实现排序的呢?

首先,我们将数组中的数据分为两个区间,已排序区间未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

与冒泡排序对比:

  • 在冒泡排序中,经过每一轮的排序处理后,数组后端的数是排好序的。
  • 在插入排序中,经过每一轮的排序处理后,数组前端的数是排好序的。

代码示例

Java

import java.util.Arrays;

public class InsertionSort {

    private static void insertionSort(int[] nums) {
        for (int i = 1, j, n = nums.length; i < n; ++i) {
            int num = nums[i];
            for (j = i - 1; j >=0 && nums[j] > num; --j) {
                nums[j + 1] = nums[j];
            }
            nums[j + 1] = num;
        }
    }

    public static void main(String[] args) {
        int[] nums = {1, 2, 7, 9, 5, 8};
        insertionSort(nums);
        System.out.println(Arrays.toString(nums));
    }
}

JavaScript

function insertionSort(inputArr) {
    let len = inputArr.length;
    for (let i = 1; i <= len - 1; i++) {
        let temp = inputArr[i];
        let j = i - 1;
        while (j >= 0 && inputArr[j] > temp) {
            inputArr[j + 1] = inputArr[j];
            j--;
        }
        inputArr[j + 1] = temp;
    }
    return (inputArr);
}

let arr = [6, 3, 2, 1, 5];
console.log(insertionSort(arr))

Go

package main

import "fmt"

func insertionSort(nums []int) {
	for i, n := 1, len(nums); i < n; i++ {
		j, num := i-1, nums[i]
		for ; j >= 0 && nums[j] > num; j-- {
			nums[j+1] = nums[j]
		}
		nums[j+1] = num
	}
}

func main() {
	nums := []int{1, 2, 7, 9, 5, 8}
	insertionSort(nums)
	fmt.Println(nums)
}

算法分析

空间复杂度 O(1),时间复杂度 O(n²)。

分情况讨论:

  1. 给定的数组按照顺序排好序:只需要进行 n-1 次比较,两两交换次数为 0,时间复杂度为 O(n),这是最好的情况。
  2. 给定的数组按照逆序排列:需要进行 n*(n-1)/2 次比较,时间复杂度为 O(n²),这是最坏的情况。
  3. 给定的数组杂乱无章:在这种情况下,平均时间复杂度是 O(n²)。

因此,时间复杂度是 O(n²),这也是一种稳定的排序算法。