Skip to content

Latest commit

 

History

History
131 lines (105 loc) · 3.86 KB

File metadata and controls

131 lines (105 loc) · 3.86 KB

English Version

题目描述

给定一个二维平面,平面上有 个点,求最多有多少个点在同一条直线上。

示例 1:

输入: [[1,1],[2,2],[3,3]]
输出: 3
解释:
^
|
|        o
|     o
|  o  
+------------->
0  1  2  3  4

示例 2:

输入: [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
输出: 4
解释:
^
|
|  o
|     o        o
|        o
|  o        o
+------------------->
0  1  2  3  4  5  6

解法

在平面上确定一个点 points[i],其他点与 point[i] 可以求得一个斜率,斜率相同的点意味着它们与 points[i] 在同一条直线上。

所以可以用哈希表作为计数器,其中斜率作为 key,然后累计当前点相同的斜率出现的次数。斜率可能是小数,我们可以用分数形式表示,先求分子分母的最大公约数,然后约分,最后将“分子.分母” 作为 key 即可。

需要注意,如果平面上有和当前点重叠的点,如果进行约分,会出现除 0 的情况,那么我们单独用一个变量 duplicate 统计重复点的个数,重复点一定是过当前点的直线的。

Python3

class Solution:
    def maxPoints(self, points: List[List[int]]) -> int:
        def gcd(a, b) -> int:
            return a if b == 0 else gcd(b, a % b)
            
        n = len(points)
        if n < 3:
            return n
        res = 0
        for i in range(n - 1):
            counter = collections.Counter()
            t_max = duplicate = 0
            for j in range(i + 1, n):
                delta_x = points[i][0] - points[j][0]
                delta_y = points[i][1] - points[j][1]
                if delta_x == 0 and delta_y == 0:
                    duplicate += 1
                    continue
                g = gcd(delta_x, delta_y)
                d_x = delta_x // g
                d_y = delta_y // g
                key = f'{d_x}.{d_y}'
                counter[key] += 1
                t_max = max(t_max, counter[key])
            res = max(res, t_max + duplicate + 1)
        return res

Java

class Solution {
    public int maxPoints(int[][] points) {
        int n = points.length;
        if (n < 3) {
            return n;
        }
        int res = 0;
        for (int i = 0; i < n - 1; ++i) {
            Map<String, Integer> kCounter = new HashMap<>();
            int max = 0;
            int duplicate = 0;
            for (int j = i + 1; j < n; ++j) {
                int deltaX = points[i][0] - points[j][0];
                int deltaY = points[i][1] - points[j][1];
                if (deltaX == 0 && deltaY == 0) {
                    ++duplicate;
                    continue;
                }
                int gcd = gcd(deltaX, deltaY);
                int dX = deltaX / gcd;
                int dY = deltaY / gcd;
                String key = dX + "." + dY;
                kCounter.put(key, kCounter.getOrDefault(key, 0) + 1);
                max = Math.max(max, kCounter.get(key));
            }
            res = Math.max(res, max + duplicate + 1);
        }
        return res;
    }

    private int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
}

...