Skip to content

Latest commit

 

History

History
87 lines (52 loc) · 2.81 KB

File metadata and controls

87 lines (52 loc) · 2.81 KB

English Version

题目描述

我们都知道安卓有个手势解锁的界面,是一个 3 x 3 的点所绘制出来的网格。用户可以设置一个 “解锁模式” ,通过连接特定序列中的点,形成一系列彼此连接的线段,每个线段的端点都是序列中两个连续的点。如果满足以下两个条件,则 k 点序列是有效的解锁模式:

  • 解锁模式中的所有点 互不相同
  • 假如模式中两个连续点的线段需要经过其他点,那么要经过的点必须事先出现在序列中(已经经过),不能跨过任何还未被经过的点。

 

以下是一些有效和无效解锁模式的示例:

 
  • 无效手势:[4,1,3,6] ,连接点 1 和点 3 时经过了未被连接过的 2 号点。
  • 无效手势:[4,1,9,2] ,连接点 1 和点 9 时经过了未被连接过的 5 号点。
  • 有效手势:[2,4,1,3,6] ,连接点 1 和点 3 是有效的,因为虽然它经过了点 2 ,但是点 2 在该手势中之前已经被连过了。
  • 有效手势:[6,5,4,1,9,2] ,连接点 1 和点 9 是有效的,因为虽然它经过了按键 5 ,但是点 5 在该手势中之前已经被连过了。

给你两个整数,分别为 ​​mn ,那么请你统计一下有多少种 不同且有效的解锁模式 ,是 至少 需要经过 m 个点,但是 不超过 n 个点的。

两个解锁模式 不同 需满足:经过的点不同或者经过点的顺序不同。

 

示例 1:

输入:m = 1, n = 1
输出:9

示例 2:

输入:m = 1, n = 2
输出:65

 

提示:

  • 1 <= m, n <= 9

解法

Python3

Java

...