Skip to content

Latest commit

 

History

History
107 lines (78 loc) · 3.15 KB

File metadata and controls

107 lines (78 loc) · 3.15 KB

English Version

题目描述

给一非空的单词列表,返回前 个出现次数最多的单词。

返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率,按字母顺序排序。

示例 1:

输入: ["i", "love", "leetcode", "i", "love", "coding"], k = 2
输出: ["i", "love"]
解析: "i" 和 "love" 为出现次数最多的两个单词,均为2次。
    注意,按字母顺序 "i" 在 "love" 之前。

 

示例 2:

输入: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
输出: ["the", "is", "sunny", "day"]
解析: "the", "is", "sunny" 和 "day" 是出现次数最多的四个单词,
    出现次数依次为 4, 3, 2 和 1 次。

 

注意:

  1. 假定 k 总为有效值, 1 ≤ k ≤ 集合元素数。
  2. 输入的单词均由小写字母组成。

 

扩展练习:

  1. 尝试以 O(n log k) 时间复杂度和 O(n) 空间复杂度解决。

解法

Python3

class Solution:
    def topKFrequent(self, words: List[str], k: int) -> List[str]:
        counter = collections.Counter(words)
        res = sorted(counter, key=lambda word: (-counter[word], word))
        return res[:k]

Java

class Solution {
    public List<String> topKFrequent(String[] words, int k) {
        Map<String, Integer> counter = new HashMap<>();
        for (String word : words) {
            counter.put(word, counter.getOrDefault(word, 0) + 1);
        }
        PriorityQueue<String> minHeap = new PriorityQueue<>((a, b) -> {
            if (counter.get(a).equals(counter.get(b))) {
                return b.compareTo(a);
            }
            return counter.get(a) - counter.get(b);
        });
        for (String word : counter.keySet()) {
            minHeap.offer(word);
            if (minHeap.size() > k) {
                minHeap.poll();
            }
        }
        List<String> res = new ArrayList<>();
        while (!minHeap.isEmpty()) {
            res.add(minHeap.poll());
        }
        Collections.reverse(res);
        return res;
    }
}

...