给你一个 m x n
的矩阵 matrix
。如果这个矩阵是托普利茨矩阵,返回 true
;否则,返回 false
。
如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。
示例 1:
输入:matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]] 输出:true 解释: 在上述矩阵中, 其对角线为: "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]"。 各条对角线上的所有元素均相同, 因此答案是 True 。
示例 2:
输入:matrix = [[1,2],[2,2]] 输出:false 解释: 对角线 "[1, 2]" 上的元素不同。
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 20
0 <= matrix[i][j] <= 99
进阶:
- 如果矩阵存储在磁盘上,并且内存有限,以至于一次最多只能将矩阵的一行加载到内存中,该怎么办?
- 如果矩阵太大,以至于一次只能将不完整的一行加载到内存中,该怎么办?
遍历矩阵,若出现元素与其左上角的元素不等的情况,返回 false
。
class Solution:
def isToeplitzMatrix(self, matrix: List[List[int]]) -> bool:
m, n = len(matrix), len(matrix[0])
for i in range(1, m):
for j in range(1, n):
if matrix[i][j] != matrix[i - 1][j - 1]:
return False
return True
class Solution {
public boolean isToeplitzMatrix(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
if (matrix[i][j] != matrix[i - 1][j - 1]) {
return false;
}
}
}
return true;
}
}