有一个 m x n
的二元网格,其中 1
表示砖块,0
表示空白。砖块 稳定(不会掉落)的前提是:
- 一块砖直接连接到网格的顶部,或者
- 至少有一块相邻(4 个方向之一)砖块 稳定 不会掉落时
给你一个数组 hits
,这是需要依次消除砖块的位置。每当消除 hits[i] = (rowi, coli)
位置上的砖块时,对应位置的砖块(若存在)会消失,然后其他的砖块可能因为这一消除操作而掉落。一旦砖块掉落,它会立即从网格中消失(即,它不会落在其他稳定的砖块上)。
返回一个数组 result
,其中 result[i]
表示第 i
次消除操作对应掉落的砖块数目。
注意,消除可能指向是没有砖块的空白位置,如果发生这种情况,则没有砖块掉落。
示例 1:
输入:grid = [[1,0,0,0],[1,1,1,0]], hits = [[1,0]] 输出:[2] 解释: 网格开始为: [[1,0,0,0], [1,1,1,0]] 消除 (1,0) 处加粗的砖块,得到网格: [[1,0,0,0] [0,1,1,0]] 两个加粗的砖不再稳定,因为它们不再与顶部相连,也不再与另一个稳定的砖相邻,因此它们将掉落。得到网格: [[1,0,0,0], [0,0,0,0]] 因此,结果为 [2] 。
示例 2:
输入:grid = [[1,0,0,0],[1,1,0,0]], hits = [[1,1],[1,0]] 输出:[0,0] 解释: 网格开始为: [[1,0,0,0], [1,1,0,0]] 消除 (1,1) 处加粗的砖块,得到网格: [[1,0,0,0], [1,0,0,0]] 剩下的砖都很稳定,所以不会掉落。网格保持不变: [[1,0,0,0], [1,0,0,0]] 接下来消除 (1,0) 处加粗的砖块,得到网格: [[1,0,0,0], [0,0,0,0]] 剩下的砖块仍然是稳定的,所以不会有砖块掉落。 因此,结果为 [0,0] 。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
grid[i][j]
为0
或1
1 <= hits.length <= 4 * 104
hits[i].length == 2
0 <= xi <= m - 1
0 <= yi <= n - 1
- 所有
(xi, yi)
互不相同