There are n
engineers numbered from 1 to n
and two arrays: speed
and efficiency
, where speed[i]
and efficiency[i]
represent the speed and efficiency for the i-th engineer respectively. Return the maximum performance of a team composed of at most k
engineers, since the answer can be a huge number, return this modulo 10^9 + 7.
The performance of a team is the sum of their engineers' speeds multiplied by the minimum efficiency among their engineers.
Example 1:
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 2 Output: 60 Explanation: We have the maximum performance of the team by selecting engineer 2 (with speed=10 and efficiency=4) and engineer 5 (with speed=5 and efficiency=7). That is, performance = (10 + 5) * min(4, 7) = 60.
Example 2:
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 3 Output: 68 Explanation: This is the same example as the first but k = 3. We can select engineer 1, engineer 2 and engineer 5 to get the maximum performance of the team. That is, performance = (2 + 10 + 5) * min(5, 4, 7) = 68.
Example 3:
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 4 Output: 72
Constraints:
1 <= n <= 10^5
speed.length == n
efficiency.length == n
1 <= speed[i] <= 10^5
1 <= efficiency[i] <= 10^8
1 <= k <= n