forked from NVlabs/noise2noise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
163 lines (127 loc) · 6.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import tensorflow as tf
import numpy as np
import dnnlib
import dnnlib.tflib as tflib
from dnnlib.tflib.autosummary import autosummary
import dnnlib.tflib.tfutil as tfutil
import dnnlib.util as util
import config
from util import save_image, save_snapshot
from validation import ValidationSet
from dataset import create_dataset
class AugmentGaussian:
def __init__(self, validation_stddev, train_stddev_rng_range):
self.validation_stddev = validation_stddev
self.train_stddev_range = train_stddev_rng_range
def add_train_noise_tf(self, x):
(minval,maxval) = self.train_stddev_range
shape = tf.shape(x)
rng_stddev = tf.random_uniform(shape=[1, 1, 1], minval=minval/255.0, maxval=maxval/255.0)
return x + tf.random_normal(shape) * rng_stddev
def add_validation_noise_np(self, x):
return x + np.random.normal(size=x.shape)*(self.validation_stddev/255.0)
class AugmentPoisson:
def __init__(self, lam_max):
self.lam_max = lam_max
def add_train_noise_tf(self, x):
chi_rng = tf.random_uniform(shape=[1, 1, 1], minval=0.001, maxval=self.lam_max)
return tf.random_poisson(chi_rng*(x+0.5), shape=[])/chi_rng - 0.5
def add_validation_noise_np(self, x):
chi = 30.0
return np.random.poisson(chi*(x+0.5))/chi - 0.5
def compute_ramped_down_lrate(i, iteration_count, ramp_down_perc, learning_rate):
ramp_down_start_iter = iteration_count * (1 - ramp_down_perc)
if i >= ramp_down_start_iter:
t = ((i - ramp_down_start_iter) / ramp_down_perc) / iteration_count
smooth = (0.5+np.cos(t * np.pi)/2)**2
return learning_rate * smooth
return learning_rate
def train(
submit_config: dnnlib.SubmitConfig,
iteration_count: int,
eval_interval: int,
minibatch_size: int,
learning_rate: float,
ramp_down_perc: float,
noise: dict,
validation_config: dict,
train_tfrecords: str,
noise2noise: bool):
noise_augmenter = dnnlib.util.call_func_by_name(**noise)
validation_set = ValidationSet(submit_config)
validation_set.load(**validation_config)
# Create a run context (hides low level details, exposes simple API to manage the run)
ctx = dnnlib.RunContext(submit_config, config)
# Initialize TensorFlow graph and session using good default settings
tfutil.init_tf(config.tf_config)
dataset_iter = create_dataset(train_tfrecords, minibatch_size, noise_augmenter.add_train_noise_tf)
# Construct the network using the Network helper class and a function defined in config.net_config
with tf.device("/gpu:0"):
net = tflib.Network(**config.net_config)
# Optionally print layer information
net.print_layers()
print('Building TensorFlow graph...')
with tf.name_scope('Inputs'), tf.device("/cpu:0"):
lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[])
noisy_input, noisy_target, clean_target = dataset_iter.get_next()
noisy_input_split = tf.split(noisy_input, submit_config.num_gpus)
noisy_target_split = tf.split(noisy_target, submit_config.num_gpus)
clean_target_split = tf.split(clean_target, submit_config.num_gpus)
# Define the loss function using the Optimizer helper class, this will take care of multi GPU
opt = tflib.Optimizer(learning_rate=lrate_in, **config.optimizer_config)
for gpu in range(submit_config.num_gpus):
with tf.device("/gpu:%d" % gpu):
net_gpu = net if gpu == 0 else net.clone()
denoised = net_gpu.get_output_for(noisy_input_split[gpu])
if noise2noise:
meansq_error = tf.reduce_mean(tf.square(noisy_target_split[gpu] - denoised))
else:
meansq_error = tf.reduce_mean(tf.square(clean_target_split[gpu] - denoised))
# Create an autosummary that will average over all GPUs
with tf.control_dependencies([autosummary("Loss", meansq_error)]):
opt.register_gradients(meansq_error, net_gpu.trainables)
train_step = opt.apply_updates()
# Create a log file for Tensorboard
summary_log = tf.summary.FileWriter(submit_config.run_dir)
summary_log.add_graph(tf.get_default_graph())
print('Training...')
time_maintenance = ctx.get_time_since_last_update()
ctx.update(loss='run %d' % submit_config.run_id, cur_epoch=0, max_epoch=iteration_count)
# The actual training loop
for i in range(iteration_count):
# Whether to stop the training or not should be asked from the context
if ctx.should_stop():
break
# Dump training status
if i % eval_interval == 0:
time_train = ctx.get_time_since_last_update()
time_total = ctx.get_time_since_start()
# Evaluate 'x' to draw a batch of inputs
[source_mb, target_mb] = tfutil.run([noisy_input, clean_target])
denoised = net.run(source_mb)
save_image(submit_config, denoised[0], "img_{0}_y_pred.png".format(i))
save_image(submit_config, target_mb[0], "img_{0}_y.png".format(i))
save_image(submit_config, source_mb[0], "img_{0}_x_aug.png".format(i))
validation_set.evaluate(net, i, noise_augmenter.add_validation_noise_np)
print('iter %-10d time %-12s sec/eval %-7.1f sec/iter %-7.2f maintenance %-6.1f' % (
autosummary('Timing/iter', i),
dnnlib.util.format_time(autosummary('Timing/total_sec', time_total)),
autosummary('Timing/sec_per_eval', time_train),
autosummary('Timing/sec_per_iter', time_train / eval_interval),
autosummary('Timing/maintenance_sec', time_maintenance)))
dnnlib.tflib.autosummary.save_summaries(summary_log, i)
ctx.update(loss='run %d' % submit_config.run_id, cur_epoch=i, max_epoch=iteration_count)
time_maintenance = ctx.get_last_update_interval() - time_train
lrate = compute_ramped_down_lrate(i, iteration_count, ramp_down_perc, learning_rate)
tfutil.run([train_step], {lrate_in: lrate})
print("Elapsed time: {0}".format(util.format_time(ctx.get_time_since_start())))
save_snapshot(submit_config, net, 'final')
# Summary log and context should be closed at the end
summary_log.close()
ctx.close()