forked from Alii-Ganjj/LongitudinalAMDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
480 lines (442 loc) · 24.2 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import os
import copy
import logging
import time
import torch
import numpy as np
import matplotlib.pyplot as plt
import torchvision.utils as vutils
from sklearn.metrics import roc_auc_score
from Models.NextStepModels import Pix2PixModel
def train(model, datamodule, args):
train_dataloader, val_dataloader, test_dataloader = datamodule.train_dataloader(), datamodule.val_dataloader(), \
datamodule.test_dataloader()
checkpoint = {'model': None, 'val_loss': 1e10, 'val_acc': None, 'val_auc': None, 'test_loss': None,
'test_acc': None, 'test_auc': None, 'iter': None}
epoch, iteration = 0, 0
model.train()
if not args.debug:
for epoch in range(1, args.num_epochs + 1):
epoch_loss = 0.
for itr, batch in enumerate(train_dataloader, 0):
model.train()
x, y = batch
x, y = x.to(args.device), y.to(args.device)
y_pred = model(x)
loss = args.criterion(y_pred, y)
args.optimizer.zero_grad()
loss.backward()
args.optimizer.step()
args.writer.add_scalar('Train/Loss_Iter', loss, iteration)
epoch_loss += loss
iteration += 1
if (itr + 1) % args.num_test_iters == 0:
eval_val = test(model, val_dataloader, args)
eval_test = test(model, test_dataloader, args)
args.writer.add_scalar('Val/Loss_Iter', eval_val['loss'], iteration)
args.writer.add_scalar('Val/Acc_Iter', eval_val['acc'], iteration)
args.writer.add_scalar('Val/AUC_Iter', eval_val['auc'], iteration)
args.writer.add_scalar('Test/Loss_Iter', eval_test['loss'], iteration)
args.writer.add_scalar('Test/Acc_Iter', eval_test['acc'], iteration)
args.writer.add_scalar('Test/AUC_Iter', eval_test['auc'], iteration)
logging.warning(
'Epoch: {}/{} \t Iter: {}/{} \t Loss: {:.4f} \t Val_Acc: {:.4f} \t Val_AUC: {:.4f} \t'
' Test_Acc: {:.4f} \t Test_AUC: {:.4f}'.
format(epoch, args.num_epochs, itr + 1, len(train_dataloader), loss.item(), eval_val['acc'],
eval_val['auc'], eval_test['acc'], eval_test['auc']))
if eval_val['loss'] < checkpoint['val_loss']:
checkpoint['model'] = copy.deepcopy(model.state_dict())
checkpoint['val_acc'], checkpoint['val_loss'], checkpoint['val_auc'] = eval_val['acc'], \
eval_val['loss'], \
eval_val['auc']
checkpoint['test_acc'], checkpoint['test_loss'], checkpoint['test_auc'] = eval_test['acc'], \
eval_test['loss'], \
eval_test['auc']
checkpoint['iter'] = iteration
else:
logging.warning('Epoch: {}/{} \t Iter: {}/{} \t Loss: {:.4f}'.
format(epoch, args.num_epochs, itr + 1, len(train_dataloader), loss.item()))
# Testing at the end of epoch.
epoch_loss = epoch_loss / len(train_dataloader)
logging.warning('Evaluating Network at the end of epoch #{}:'.format(epoch))
eval_val = test(model, val_dataloader, args)
eval_test = test(model, test_dataloader, args)
args.writer.add_scalar('Train/Loss_Epoch', epoch_loss, epoch)
args.writer.add_scalar('Val/Loss_Epoch', eval_val['loss'], epoch)
args.writer.add_scalar('Val/Acc_Epoch', eval_val['acc'], epoch)
args.writer.add_scalar('Val/AUC_Epoch', eval_val['auc'], epoch)
args.writer.add_scalar('Test/Loss_Epoch', eval_test['loss'], epoch)
args.writer.add_scalar('Test/Acc_Epoch', eval_test['acc'], epoch)
args.writer.add_scalar('Test/AUC_Epoch', eval_test['auc'], epoch)
logging.warning('Epoch: {}/{} \t Epoch_Loss: {:.4f} \t Val_Acc: {:.4f} \t Val_AUC: {:.4f} \t '
'Test_Acc: {:.4f} \t Test_AUC: {:.4f}'.
format(epoch, args.num_epochs, epoch_loss.item(), eval_val['acc'], eval_val['auc'],
eval_test['acc'], eval_test['auc']))
if eval_val['loss'] < checkpoint['val_loss']:
checkpoint['model'] = copy.deepcopy(model.state_dict())
checkpoint['val_acc'], checkpoint['val_loss'], checkpoint['val_auc'] = eval_val['acc'], eval_val[
'loss'], eval_val['auc']
checkpoint['test_acc'], checkpoint['test_loss'], checkpoint['test_auc'] = eval_test['acc'], eval_test[
'loss'], eval_test['auc']
checkpoint['iter'] = iteration
return checkpoint
else:
model.train()
train_batch = next(iter(train_dataloader))
x, y = train_batch[0].to(args.device), train_batch[1].to(args.device)
for epoch in range(args.num_epochs):
model.train()
y_pred = model(x)
loss = args.criterion(y_pred, y)
args.optimizer.zero_grad()
loss.backward()
args.optimizer.step()
epoch_loss = loss
eval_val = test(model, val_dataloader, args)
eval_test = test(model, test_dataloader, args)
args.writer.add_scalar('Train/Loss_Epoch', epoch_loss.item(), epoch)
args.writer.add_scalar('Val/Loss_Epoch', eval_val['loss'], epoch)
args.writer.add_scalar('Val/Acc_Epoch', eval_val['acc'], epoch)
args.writer.add_scalar('Val/AUC_Epoch', eval_val['auc'], epoch)
args.writer.add_scalar('Test/Loss_Epoch', eval_test['loss'], epoch)
args.writer.add_scalar('Test/Acc_Epoch', eval_test['acc'], epoch)
args.writer.add_scalar('Test/AUC_Epcoh', eval_test['auc'], epoch)
logging.warning('Epoch: {}/{} \t Epoch_Loss: {:.4f} \t Val_Acc: {:.4f} \t Val_AUC: {:.4f} \t '
'Test_Acc: {:.4f} \t Test_AUC: {:.4f}'.
format(epoch, args.num_epochs, epoch_loss.item(), eval_val['acc'], eval_val['auc'],
eval_test['acc'], eval_test['auc']))
if eval_val['loss'] < checkpoint['val_loss']:
checkpoint['model'] = copy.deepcopy(model.state_dict())
checkpoint['val_acc'], checkpoint['val_loss'], checkpoint['val_auc'] = eval_val['acc'], eval_val[
'loss'], eval_val['auc']
checkpoint['test_acc'], checkpoint['test_loss'], checkpoint['test_auc'] = eval_test['acc'], eval_test[
'loss'], eval_test['auc']
return checkpoint
def test(model, test_dataloader, args):
model.eval()
total_loss = 0
correct = 0
total = 0
y_preds = []
y_true = []
with torch.no_grad():
for data in test_dataloader:
x, y = data
x, y = x.to(args.device), y.to(args.device)
y_pred = model(x)
y_preds.append(y_pred)
y_true.append(y)
loss = args.criterion(y_pred, y)
total_loss += loss
_, label_pred = torch.max(y_pred, dim=1)
total += y.shape[0]
correct += (label_pred == y).sum().item()
total_loss = total_loss / total
accuracy = correct / total
y_preds = torch.softmax(torch.stack(y_preds, dim=0).squeeze(), dim=1)
y_true = torch.stack(y_true).squeeze()
if not args.debug:
if args.num_class == 2:
auc = roc_auc_score(y_true.cpu().numpy(), (y_preds[:, 1].squeeze()).cpu().numpy())
else:
auc = roc_auc_score(y_true.cpu().numpy(), y_preds.cpu().numpy(), multi_class='ovo')
else:
auc = 0.
model.train()
return {'loss': total_loss, 'acc': accuracy, 'auc': auc}
def train_pix2pix(model, datamodule, args):
train_dataloader, val_dataloader, test_dataloader = \
datamodule.train_dataloader(), datamodule.val_dataloader(), datamodule.test_dataloader()
model.train()
iteration = 0
train_b, val_b, test_b = prepare_random_batch(train_dataloader, val_dataloader, test_dataloader, args)
for epoch in range(args.epoch_count, args.n_epochs + args.n_epochs_decay + 1):
epoch_start = time.time()
model.update_learning_rate()
for itr, batch in enumerate(train_dataloader, 0):
# if itr == 1:
# break
model.set_input(batch[0])
model.optimize_parameters()
iteration += 1
losses = model.get_current_losses()
if (itr + 1) % args.print_freq == 0:
args.writer = add_losses_to_writer(args.writer, losses, iteration=iteration, on_epoch=False)
logging.warning(prepare_logging_string(losses, epoch, args.n_epochs + args.n_epochs_decay, itr + 1,
len(train_dataloader)))
logging.warning('End of Epoch #{} \t time taken: {:.4f} seconds.'.format(epoch, time.time() - epoch_start))
if epoch % args.num_save_epochs == 0:
logging.warning('Saving models at the end of epoch {}'.format(epoch))
model.save_networks(epoch)
model.to(model.device)
args.epoch = epoch
logging.warning('Evaluating models at the end of epoch {}'.format(epoch))
evaluate_pix2pix(train_b, val_b, test_b, epoch, args)
def evaluate_pix2pix(train_b, val_b, test_b, epoch, args):
n = args.num_save_image
model = Pix2PixModel(args, False).to(args.device)
model.setup(args)
if args.test_mode_eval:
model.eval()
if epoch == args.num_save_epochs:
plt.figure()
plt.subplot(211)
plt.axis("off")
plt.title("Training Images First Step")
plt.imshow(
np.transpose(vutils.make_grid(train_b[0][0][:n].squeeze(), padding=2, normalize=True).cpu(), (1, 2, 0)))
plt.subplot(212)
plt.axis("off")
plt.title("Training Images Second Step")
plt.imshow(
np.transpose(vutils.make_grid(train_b[0][1][:n].squeeze(), padding=2, normalize=True).cpu(), (1, 2, 0)))
plt.savefig(os.path.join(args.stdout, 'train_images.png'))
plt.close()
plt.figure()
plt.subplot(211)
plt.axis("off")
plt.title("Validation Images First Step")
plt.imshow(
np.transpose(vutils.make_grid(val_b[0][0][:n].squeeze(), padding=2, normalize=True).cpu(), (1, 2, 0)))
plt.subplot(212)
plt.axis("off")
plt.title("Validation Images Second Step")
plt.imshow(
np.transpose(vutils.make_grid(val_b[0][1][:n].squeeze(), padding=2, normalize=True).cpu(), (1, 2, 0)))
plt.savefig(os.path.join(args.stdout, 'val_images.png'))
plt.close()
plt.figure()
plt.subplot(211)
plt.axis("off")
plt.title("Test Images First Step")
plt.imshow(
np.transpose(vutils.make_grid(test_b[0][0][:n].squeeze(), padding=2, normalize=True).cpu(), (1, 2, 0)))
plt.subplot(212)
plt.axis("off")
plt.title("Test Images Second Step")
plt.imshow(
np.transpose(vutils.make_grid(test_b[0][1][:n].squeeze(), padding=2, normalize=True).cpu(), (1, 2, 0)))
plt.savefig(os.path.join(args.stdout, 'test_images.png'))
plt.show()
plt.close()
x_tilde_train, x_tilde_val, x_tilde_test = [], [], []
for i in range(n):
model.set_input((torch.unsqueeze(train_b[0][0][i], 0), torch.unsqueeze(train_b[0][1][i], 0)))
model.test()
x_tilde_train.append(model.fake_B)
model.set_input((torch.unsqueeze(val_b[0][0][i], 0), torch.unsqueeze(val_b[0][1][i], 0)))
model.test()
x_tilde_val.append(model.fake_B)
model.set_input((torch.unsqueeze(test_b[0][0][i], 0), torch.unsqueeze(test_b[0][1][i], 0)))
model.test()
x_tilde_test.append(model.fake_B)
x_tilde_train, x_tilde_val, x_tilde_test = torch.stack(x_tilde_train).squeeze(), torch.stack(x_tilde_val).squeeze(), \
torch.stack(x_tilde_test).squeeze()
plt.figure()
plt.axis("off")
plt.title("Training Generated Images Epoch {}".format(epoch))
plt.imshow(
np.transpose(vutils.make_grid(x_tilde_train.squeeze().cpu(), padding=2, normalize=True).cpu(), (1, 2, 0)))
plt.savefig(os.path.join(args.stdout, 'train_gen_images_ep_{}.png'.format(epoch)))
plt.close()
plt.figure()
plt.axis("off")
plt.title("Validation Generated Images Epoch {}".format(epoch))
plt.imshow(np.transpose(vutils.make_grid(x_tilde_val.squeeze().cpu(), padding=2, normalize=True).cpu(), (1, 2, 0)))
plt.savefig(os.path.join(args.stdout, 'val_gen_images_ep_{}.png'.format(epoch)))
plt.close()
plt.figure()
plt.axis("off")
plt.title("Test Generated Images Epoch {}".format(epoch))
plt.imshow(np.transpose(vutils.make_grid(x_tilde_test.squeeze().cpu(), padding=2, normalize=True).cpu(), (1, 2, 0)))
plt.savefig(os.path.join(args.stdout, 'test_gen_images_ep_{}.png'.format(epoch)))
plt.close()
def prepare_random_batch(tr_loader, val_loader, te_loader, args):
n = args.num_save_image
x1_tr, x2_tr, y_tr, x1_val, x2_val, y_val, x1_te, x2_te, y_te = [], [], [], [], [], [], [], [], []
itr_tr, itr_val, itr_te = iter(tr_loader), iter(val_loader), iter(te_loader)
for i in range(n):
tr_sample = next(itr_tr)
x1_b_tr, x2_b_tr, y_b_tr = tr_sample[0][0].to(args.device), tr_sample[0][1].to(args.device), tr_sample[1].to(
args.device)
x1_tr.append(x1_b_tr)
x2_tr.append(x2_b_tr)
y_tr.append(y_b_tr)
val_sample = next(itr_val)
x1_b_val, x2_b_val, y_b_val = val_sample[0][0].to(args.device), val_sample[0][1].to(args.device), val_sample[1] \
.to(args.device)
x1_val.append(x1_b_val)
x2_val.append(x2_b_val)
y_val.append(y_b_val)
te_sample = next(itr_te)
x1_b_te, x2_b_te, y_b_te = te_sample[0][0].to(args.device), te_sample[0][1].to(args.device), te_sample[1].to(
args.device)
x1_te.append(x1_b_te)
x2_te.append(x2_b_te)
y_te.append(y_b_te)
x1_tr, x2_tr, y_tr = (torch.stack(x1_tr).squeeze())[:n], (torch.stack(x2_tr).squeeze())[:n], (torch.stack(
y_tr).squeeze())[:n]
x1_val, x2_val, y_val = (torch.stack(x1_val).squeeze())[:n], (torch.stack(x2_val).squeeze())[:n], (torch.stack(
y_val).squeeze())[:n]
x1_te, x2_te, y_te = (torch.stack(x1_te).squeeze())[:n], (torch.stack(x2_te).squeeze())[:n], (torch.stack(
y_te).squeeze())[:n]
batch_tr, batch_val, batch_te = ((x1_tr, x2_tr), y_tr), ((x1_val, x2_val), y_val), ((x1_te, x2_te), y_te)
logging.warning('*****************************************************')
logging.warning('Sampled batches:')
logging.warning('Train:')
logging.warning(y_tr)
logging.warning('Val:')
logging.warning(y_val)
logging.warning('Test:')
logging.warning(y_te)
logging.warning('*****************************************************')
return batch_tr, batch_val, batch_te
def add_losses_to_writer(writer, losses, epoch=None, iteration=None, on_epoch=True):
loss_names = losses.keys()
if on_epoch:
for name in loss_names:
writer.add_scalar('Train/{}_Epoch'.format(name), losses[name], epoch)
else:
for name in loss_names:
writer.add_scalar('Train/{}_Iter'.format(name), losses[name], iteration)
return writer
def prepare_logging_string(losses, epoch, num_epochs, itr, num_iteration):
log = 'Epoch: {}/{} \t Iter: {}/{}'.format(epoch, num_epochs, itr, num_iteration)
for k, v in losses.items():
log += ' \t {}: {:.4f}'.format(k, v)
return log
def train_next_step_classifier(model, datamodule, args):
train_dataloader, val_dataloader, test_dataloader = datamodule.train_dataloader(), datamodule.val_dataloader(), \
datamodule.test_dataloader()
checkpoint = {'model': None, 'val_loss': 1e10, 'val_acc': None, 'val_auc': None, 'test_loss': None,
'test_acc': None, 'test_auc': None, 'iter': None}
epoch, iteration = 0, 0
model.train()
if not args.debug:
for epoch in range(1, args.num_epochs + 1):
epoch_loss = 0.
for itr, batch in enumerate(train_dataloader, 0):
# if itr == 1:
# break
x1, y = batch[0][0].to(args.device), batch[1].to(args.device)
y_pred = model(x1)
loss = args.class_loss(y_pred, y)
args.optimizer_c.zero_grad()
loss.backward()
args.optimizer_c.step()
args.writer.add_scalar('Train/Loss_Iter', loss, iteration)
epoch_loss += loss
iteration += 1
if (itr + 1) % args.num_test_iters == 0:
eval_val = test_next_step_classifier(model, val_dataloader, args)
eval_test = test_next_step_classifier(model, test_dataloader, args)
args.writer.add_scalar('Val/Loss_Iter', eval_val['loss'], iteration)
args.writer.add_scalar('Val/Acc_Iter', eval_val['acc'], iteration)
args.writer.add_scalar('Val/AUC_Iter', eval_val['auc'], iteration)
args.writer.add_scalar('Test/Loss_Iter', eval_test['loss'], iteration)
args.writer.add_scalar('Test/Acc_Iter', eval_test['acc'], iteration)
args.writer.add_scalar('Test/AUC_Iter', eval_test['auc'], iteration)
logging.warning(
'Epoch: {}/{} \t Iter: {}/{} \t Loss: {:.4f} \t Val_Acc: {:.4f} \t Val_AUC: {:.4f} \t'
' Test_Acc: {:.4f} \t Test_AUC: {:.4f}'.
format(epoch, args.num_epochs, itr + 1, len(train_dataloader), loss.item(), eval_val['acc'],
eval_val['auc'], eval_test['acc'], eval_test['auc']))
if eval_val['loss'] < checkpoint['val_loss']:
checkpoint['model'] = copy.deepcopy(model.state_dict())
checkpoint['val_acc'], checkpoint['val_loss'], checkpoint['val_auc'] = eval_val['acc'], \
eval_val['loss'], \
eval_val['auc']
checkpoint['test_acc'], checkpoint['test_loss'], checkpoint['test_auc'] = eval_test['acc'], \
eval_test['loss'], \
eval_test['auc']
checkpoint['iter'] = iteration
else:
logging.warning('Epoch: {}/{} \t Iter: {}/{} \t Loss: {:.4f}'.
format(epoch, args.num_epochs, itr + 1, len(train_dataloader), loss.item()))
# Testing at the end of epoch.
epoch_loss = epoch_loss / len(train_dataloader)
logging.warning('Evaluating Network at the end of epoch #{}:'.format(epoch))
eval_val = test_next_step_classifier(model, val_dataloader, args)
eval_test = test_next_step_classifier(model, test_dataloader, args)
args.writer.add_scalar('Train/Loss_Epoch', epoch_loss, epoch)
args.writer.add_scalar('Val/Loss_Epoch', eval_val['loss'], epoch)
args.writer.add_scalar('Val/Acc_Epoch', eval_val['acc'], epoch)
args.writer.add_scalar('Val/AUC_Epoch', eval_val['auc'], epoch)
args.writer.add_scalar('Test/Loss_Epoch', eval_test['loss'], epoch)
args.writer.add_scalar('Test/Acc_Epoch', eval_test['acc'], epoch)
args.writer.add_scalar('Test/AUC_Epoch', eval_test['auc'], epoch)
logging.warning('Epoch: {}/{} \t Epoch_Loss: {:.4f} \t Val_Acc: {:.4f} \t Val_AUC: {:.4f} \t '
'Test_Acc: {:.4f} \t Test_AUC: {:.4f}'.
format(epoch, args.num_epochs, epoch_loss.item(), eval_val['acc'], eval_val['auc'],
eval_test['acc'], eval_test['auc']))
if eval_val['loss'] < checkpoint['val_loss']:
checkpoint['model'] = copy.deepcopy(model.state_dict())
checkpoint['val_acc'], checkpoint['val_loss'], checkpoint['val_auc'] = eval_val['acc'], eval_val[
'loss'], eval_val['auc']
checkpoint['test_acc'], checkpoint['test_loss'], checkpoint['test_auc'] = eval_test['acc'], eval_test[
'loss'], eval_test['auc']
checkpoint['iter'] = iteration
return checkpoint
else:
model.train()
train_batch = next(iter(train_dataloader))
x, y = train_batch[0].to(args.device), train_batch[1].to(args.device)
for epoch in range(args.num_epochs):
model.train()
y_pred = model(x)
loss = args.criterion(y_pred, y)
args.optimizer.zero_grad()
loss.backward()
args.optimizer.step()
epoch_loss = loss
eval_val = test(model, val_dataloader, args)
eval_test = test(model, test_dataloader, args)
args.writer.add_scalar('Train/Loss_Epoch', epoch_loss.item(), epoch)
args.writer.add_scalar('Val/Loss_Epoch', eval_val['loss'], epoch)
args.writer.add_scalar('Val/Acc_Epoch', eval_val['acc'], epoch)
args.writer.add_scalar('Val/AUC_Epoch', eval_val['auc'], epoch)
args.writer.add_scalar('Test/Loss_Epoch', eval_test['loss'], epoch)
args.writer.add_scalar('Test/Acc_Epoch', eval_test['acc'], epoch)
args.writer.add_scalar('Test/AUC_Epcoh', eval_test['auc'], epoch)
logging.warning('Epoch: {}/{} \t Epoch_Loss: {:.4f} \t Val_Acc: {:.4f} \t Val_AUC: {:.4f} \t '
'Test_Acc: {:.4f} \t Test_AUC: {:.4f}'.
format(epoch, args.num_epochs, epoch_loss.item(), eval_val['acc'], eval_val['auc'],
eval_test['acc'], eval_test['auc']))
if eval_val['loss'] < checkpoint['val_loss']:
checkpoint['model'] = copy.deepcopy(model.state_dict())
checkpoint['val_acc'], checkpoint['val_loss'], checkpoint['val_auc'] = eval_val['acc'], eval_val[
'loss'], eval_val['auc']
checkpoint['test_acc'], checkpoint['test_loss'], checkpoint['test_auc'] = eval_test['acc'], eval_test[
'loss'], eval_test['auc']
return checkpoint
def test_next_step_classifier(model, test_dataloader, args):
model.eval()
total_loss = 0
correct = 0
total = 0
y_preds = []
y_true = []
with torch.no_grad():
for data in test_dataloader:
x, y = data[0][0].to(args.device), data[1].to(args.device)
y_pred = model(x)
y_preds.append(y_pred)
y_true.append(y)
loss = args.class_loss(y_pred, y)
total_loss += loss
_, label_pred = torch.max(y_pred, dim=1)
total += y.shape[0]
correct += (label_pred == y).sum().item()
total_loss = total_loss / total
accuracy = correct / total
y_preds = torch.softmax(torch.stack(y_preds, dim=0).squeeze(), dim=1)
y_true = torch.stack(y_true).squeeze()
if not args.debug:
if args.binary:
auc = roc_auc_score(y_true.cpu().numpy(), (y_preds[:, 1].squeeze()).cpu().numpy())
else:
auc = roc_auc_score(y_true.cpu().numpy(), y_preds.cpu().numpy(), multi_class='ovo')
else:
auc = 0.
model.train()
return {'loss': total_loss, 'acc': accuracy, 'auc': auc}