forked from DeMoriarty/custom_matmul_kernels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmbmm.py
197 lines (174 loc) · 5.39 KB
/
mbmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import cupy as cp
import numpy as np
import math
from custom_kernel import CustomKernel
class MBMMCUDA(CustomKernel):
def __init__(self,
patch_m = 4,
patch_n = 4,
share_mask=False,
):
super(MBMMCUDA, self).__init__()
assert type(share_mask) == bool
self.patch_m = patch_m
self.patch_n = patch_n
self.share_mask = share_mask
with open("kernels/mbmm_kernel.cu",'r') as f: ###
self.kernel = f.read()
self.kernel = (self.kernel
.replace("_PM_", str(self.patch_m))
.replace("_PN_", str(self.patch_n))
.replace("__MASK_BID__", "0" if share_mask else "bid")
)
self._fn_tt = cp.RawKernel(
code=self.kernel,
name="mbmm_tt",
backend='nvcc',
options=('--maxrregcount=128', '--use_fast_math')
)
self._fn_nn = cp.RawKernel(
code=self.kernel,
name="mbmm_nn",
backend='nvcc',
options=('--maxrregcount=128', '--use_fast_math')
)
self._fn_tn = cp.RawKernel(
code=self.kernel,
name="mbmm_tn",
backend='nvcc',
options=('--maxrregcount=128', '--use_fast_math')
)
self._fn_nt = cp.RawKernel(
code=self.kernel,
name="mbmm_nt",
backend='nvcc',
options=('--maxrregcount=128', '--use_fast_math')
)
def _call_nn(self, A, B, block_mask, thread_mask, element_mask):
assert A.shape[0] == B.shape[0]
assert A.shape[2] == B.shape[1]
assert A.device.type == "cuda"
assert B.device.type == "cuda"
assert A.dtype in (torch.float, torch.half)
assert B.dtype in (torch.float, torch.half)
l, m, k = A.shape
l, k, n = B.shape
assert block_mask.dtype == torch.uint8 ###
assert thread_mask.dtype == torch.uint8 ###
assert element_mask.dtype == torch.uint8
if self.share_mask:
assert block_mask.shape == (math.ceil(m / 128), math.ceil(n / 128)) ###
assert thread_mask.shape == (math.ceil(m / 8), math.ceil(n / 8)) ###
assert element_mask.shape == (m, n)
else:
assert block_mask.shape == (l, math.ceil(m / 128), math.ceil(n / 128)) ###
assert thread_mask.shape == (l, math.ceil(m / 8), math.ceil(n / 8)) ###
assert element_mask.shape == (l, m, n)
C = torch.zeros(l, m, n, device="cuda:0", dtype=A.dtype)
threads_per_block = (256,)
# blocks_per_grid = (l, math.ceil(n/128), math.ceil(m/128))
n_ = math.ceil(n / (128 * self.patch_n))
m_ = math.ceil(m / (128 * self.patch_m))
blocks_per_grid = (self.patch_n * self.patch_m, n_ * m_, l)
self._fn_nn(
grid=blocks_per_grid,
block=threads_per_block,
args=[
A.data_ptr(),
B.data_ptr(),
C.data_ptr(),
block_mask.data_ptr(),
thread_mask.data_ptr(),
element_mask.data_ptr(),
m, n, k
],
stream=self.stream
)
return C
def _call_tt(self, A, B, block_mask, thread_mask, element_mask):
raise NotImplementedError
def _call_tn(self, A, B, block_mask, thread_mask, element_mask):
raise NotImplementedError
def _call_nt(self, A, B, block_mask, thread_mask, element_mask):
raise NotImplementedError
def __call__(
self,
A,
B,
block_mask,
thread_mask,
element_mask,
mode="nn"
):
"""
Performs C = f(A) @ g(B)
A:
torch.Tensor
shape : [m, k] or [k, m] or [l, m, k] or [l, k, m]
dtype : float32
B:
torch.Tensor
shape : [n, k] or [k, n] or [l, n, k] or [l, k, n]
dtype : float32
element_mask:
mask of elements in C that are not computed
torch.Tensor, dtype : uint8
if *share_mask* == True
shape : [m, n]
else
shape : [l, m, n]
block_mask:
mask of 128x128 blocks in C that are not computed
torch.Tensor
dtype : uint8
if *share_mask* == True
shape : [ceil(m/128), ceil(n/128)]
else
shape : [l, ceil(m/128), ceil(n/128)]
thread_mask:
mask of 8x8 blocks in C that are not computed
torch.Tensor
dtype : uint8
if *share_mask* == True
shape : [ceil(m/8), ceil(n/8)]
else
shape : [l, ceil(m/8), ceil(n/8)]
mode: {"nn", "tn", "nt", "tt"}, default: "nn"
returns C:
torch.Tensor
shape : [m, n] or [l, m, n]
dtype : float32
Notes:
f() and g() are determined by *mode*
"nn" --> A @ B
"tt" --> A.T @ B.T
"nt" --> A @ B.T
"tn" --> A.T @ B
"""
assert len(A.shape) == len(B.shape)
A = A.contiguous()
B = B.contiguous()
if len(A.shape) == 2 and len(B.shape) == 2:
A2 = A[None]
B2 = B[None]
if not self.share_mask:
block_mask = block_mask[None]
thread_mask = thread_mask[None]
element_mask = element_mask[None]
elif len(A.shape) == 3 and len(B.shape) == 3:
A2 = A
B2 = B
else:
raise ValueError("shape of A and B need to be 2d or 3d")
if mode == "nn":
C = self._call_nn(A2, B2, block_mask, thread_mask, element_mask)
elif mode == "tt":
C = self._call_tt(A2, B2, block_mask, thread_mask, element_mask)
elif mode == "tn":
C = self._call_tn(A2, B2, block_mask, thread_mask, element_mask)
elif mode == "nt":
C = self._call_nt(A2, B2, block_mask, thread_mask, element_mask)
if len(A.shape) == 2 and len(B.shape) == 2:
C = C[0]
return C