-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaximum_parallelism.py
90 lines (75 loc) · 2.74 KB
/
maximum_parallelism.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import time
import numpy as np
import multiprocessing as mp
from multiprocessing import Process, Barrier, Manager
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 5
from models.common import DetectMultiBackend
def time_sync():
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def time_sync():
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
class Task(Process):
def __init__(self,
name: str,
barrier: Barrier,
private_time,
batch: int = 1):
super().__init__(name=name)
self._barrier = barrier
self._model = DetectMultiBackend(weights='yolov5x.pt', fp16=True)
self._bsize = batch
self._private = private_time
@torch.no_grad()
def run(self):
with torch.cuda.stream(torch.cuda.Stream()):
self._model.eval().to('cuda')
img = torch.rand(self._bsize, 3, 640, 640, dtype=torch.float16).cuda()
for _ in range(50):
y = self._model(img)
torch.cuda.synchronize()
# formal comparision
self._barrier.wait()
start = time_sync()
for _ in range(50):
y = self._model(img)
end = time_sync()
self._private.append(round(1000*(end - start)/50, 2))
def main():
batch = 1
parallelism = 6
avg_latency = []
for i in range(1, parallelism + 1):
barrier = Barrier(i)
timing = [Manager().list() for _ in range(i)]
tasks = []
for j in range(i):
tasks.append(Task(name='Process_%d'%(j),
barrier=barrier,
private_time=timing[j],
batch=batch,
)
)
tasks[-1].start()
for j in range(i):
tasks[j].join()
avg_latency.append(np.mean([list(lst) for lst in timing]))
# plotting
fig, ax = plt.subplots(layout='constrained')
ax.bar(range(1, parallelism+1), avg_latency, width=0.3, color='#0099CC')
ax.set_ylabel('Latency/ms')
ax.set_xlabel('Parallelism level')
ax.set_xticks(range(1, parallelism+1))
ax.set_title("Inference performance of the YOLOv5x model \n under different levels of parallelism")
for x, y in zip(range(1, parallelism+1), avg_latency):
ax.text(x, y+0.05, '%.1f' % y, ha='center', va='bottom')
fig.savefig('parallelism_level.jpg')
if __name__ == '__main__':
mp.set_start_method('spawn')
torch.multiprocessing.set_sharing_strategy('file_system')
main()