forked from microsoftarchive/BatchAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ConvNet_CIFAR10_DataAug_Distributed.py
246 lines (204 loc) · 11 KB
/
ConvNet_CIFAR10_DataAug_Distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license. See LICENSE.md file in the project root
# for full license information.
# ==============================================================================
from __future__ import print_function
import os
import math
import argparse
import numpy as np
import cntk as C
import _cntk_py
import cntk.io.transforms as xforms
from cntk.train.training_session import *
from cntk.logging import *
from cntk.debugging import *
from cntk.layers import Convolution2D, MaxPooling, AveragePooling, Dropout, BatchNormalization, Dense, default_options, identity, Sequential, For
from cntk import cross_entropy_with_softmax, classification_error, relu
# Default Paths relative to current python file.
abs_path = os.path.dirname(os.path.abspath(__file__))
# Model dimensions
image_height = 32
image_width = 32
num_channels = 3 # RGB
num_classes = 10
# Create model.
def create_convnet_cifar10_model(num_classes):
with default_options(activation=relu, pad=True):
return Sequential([
For(range(2), lambda : [
Convolution2D((3,3), 64),
Convolution2D((3,3), 64),
MaxPooling((3,3), strides=2)
]),
For(range(2), lambda i: [
Dense([256,128][i]),
Dropout(0.5)
]),
Dense(num_classes, activation=None)
])
# Create a minibatch source.
def create_image_mb_source(map_file, mean_file, train, total_number_of_samples):
if not os.path.exists(map_file) or not os.path.exists(mean_file):
raise RuntimeError("File '%s' or '%s' does not exist. Please run install_cifar10.py from DataSets/CIFAR-10 to fetch them" %
(map_file, mean_file))
# Transformation pipeline for the features has jitter/crop only when training
transforms = []
if train:
transforms += [
xforms.crop(crop_type='randomside', side_ratio=0.8, jitter_type='uniratio') # train uses jitter
]
transforms += [
xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'),
xforms.mean(mean_file)
]
# Deserializer
return C.io.MinibatchSource(
C.io.ImageDeserializer(
map_file,
C.io.StreamDefs(features=C.io.StreamDef(field='image', transforms=transforms), # 1st col in mapfile referred to as 'image'
labels=C.io.StreamDef(field='label', shape=num_classes))), # and second as 'label'
randomize=train,
max_samples=total_number_of_samples,
multithreaded_deserializer=True)
# Create the network.
def create_conv_network():
# Input variables denoting the features and label data
feature_var = C.input_variable((num_channels, image_height, image_width))
label_var = C.input_variable((num_classes))
# Apply model to input
scaled_input = C.element_times(C.constant(0.00390625), feature_var)
z = create_convnet_cifar10_model(num_classes)(scaled_input)
# Loss and metric
ce = C.cross_entropy_with_softmax(z, label_var)
pe = C.classification_error(z, label_var)
C.logging.log_number_of_parameters(z) ; print()
return {
'feature': feature_var,
'label': label_var,
'ce' : ce,
'pe' : pe,
'output': z
}
# Create trainer
def create_trainer(network, epoch_size, num_quantization_bits, block_size, warm_up, progress_writers):
# Set learning parameters
lr_per_sample = [0.0015625]*20 + [0.00046875]*20 + [0.00015625]*20 + [0.000046875]*10 + [0.000015625]
lr_schedule = C.learning_rate_schedule(lr_per_sample, unit=C.learners.UnitType.sample, epoch_size=epoch_size)
mm_time_constant = [0]*20 + [600]*20 + [1200]
mm_schedule = C.learners.momentum_as_time_constant_schedule(mm_time_constant, epoch_size=epoch_size)
l2_reg_weight = 0.002
# Create learner
if block_size != None and num_quantization_bits != 32:
raise RuntimeError("Block momentum cannot be used with quantization, please remove quantized_bits option.")
local_learner = C.learners.momentum_sgd(network['output'].parameters,
lr_schedule, mm_schedule,
l2_regularization_weight=l2_reg_weight)
if block_size != None:
parameter_learner = C.train.distributed.block_momentum_distributed_learner(local_learner, block_size=block_size)
else:
parameter_learner = C.train.distributed.data_parallel_distributed_learner(local_learner,
num_quantization_bits=num_quantization_bits,
distributed_after=warm_up)
# Create trainer
return C.Trainer(network['output'], (network['ce'], network['pe']), parameter_learner, progress_writers)
# Train and test
def train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore, profiling=False, model_path="."):
# Define mapping from input streams to network inputs
input_map = {
network['feature']: train_source.streams.features,
network['label']: train_source.streams.labels
}
# Train all minibatches
if profiling:
start_profiler(sync_gpu=True)
training_session(
trainer=trainer, mb_source = train_source,
model_inputs_to_streams = input_map,
mb_size = minibatch_size,
progress_frequency=epoch_size,
checkpoint_config = CheckpointConfig(frequency = epoch_size,
filename = os.path.join(model_path, "ConvNet_CIFAR10_DataAug"),
restore = restore),
test_config = TestConfig(test_source, minibatch_size=minibatch_size)
).train()
if profiling:
stop_profiler()
# Train and evaluate the network.
def convnet_cifar10_dataaug(train_data, test_data, mean_data, minibatch_size=64, epoch_size=50000, num_quantization_bits=32,
block_size=3200, warm_up=0, max_epochs=2, restore=False, log_to_file=None,
num_mbs_per_log=None, gen_heartbeat=False, profiling=False, tensorboard_logdir=None, model_path="."):
_cntk_py.set_computation_network_trace_level(0)
network = create_conv_network()
distributed_sync_report_freq = None
if block_size is not None:
distributed_sync_report_freq = 1
progress_writers = [C.logging.ProgressPrinter(
freq=num_mbs_per_log,
tag='Training',
log_to_file=log_to_file,
rank=C.train.distributed.Communicator.rank(),
gen_heartbeat=gen_heartbeat,
num_epochs=max_epochs,
distributed_freq=distributed_sync_report_freq)]
if tensorboard_logdir is not None:
progress_writers.append(C.logging.TensorBoardProgressWriter(
freq=num_mbs_per_log,
log_dir=tensorboard_logdir,
rank=C.train.distributed.Communicator.rank(),
model=network['output']))
trainer = create_trainer(network, epoch_size, num_quantization_bits, block_size, warm_up, progress_writers)
train_source = create_image_mb_source(train_data, mean_data, train=True, total_number_of_samples=max_epochs * epoch_size)
test_source = create_image_mb_source(test_data, mean_data, train=False, total_number_of_samples=C.io.FULL_DATA_SWEEP)
train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore, profiling, model_path)
if __name__=='__main__':
parser = argparse.ArgumentParser()
data_path = os.path.join(abs_path, "..", "..", "..", "DataSets", "CIFAR-10")
parser.add_argument('-d', '--datadir', help='Data directory where the CIFAR dataset is located',
required=True, default=data_path)
parser.add_argument('-o', '--outputdir', help='Output directory for checkpoints and models', required=False, default=None)
parser.add_argument('-l', '--logdir', help='Log file', required=False, default=None)
parser.add_argument('-t', '--tensorboard_logdir', help='Directory where TensorBoard logs should be created',
required=False, default=None)
parser.add_argument('-n', '--num_epochs', help='Total number of epochs to train', type=int, required=False, default='160')
parser.add_argument('-m', '--minibatch_size', help='Minibatch size', type=int, required=False, default='64')
parser.add_argument('-e', '--epoch_size', help='Epoch size', type=int, required=False, default='50000')
parser.add_argument('-q', '--quantized_bits', help='Number of quantized bits used for gradient aggregation', type=int,
required=False, default='32')
parser.add_argument('-a', '--distributed_after', help='Number of samples to train with before running distributed', type=int,
required=False, default='0')
parser.add_argument('-b', '--block_samples', type=int, help="Number of samples per block for block momentum (BM) distributed learner (if 0 BM learner is not used)",
required=False, default=None)
parser.add_argument('-r', '--restart', help='Indicating whether to restart from scratch (instead of restart from checkpoint file by default)',
action='store_true')
parser.add_argument('-device', '--device', type=int, help="Force to run the script on a specified device",
required=False, default=None)
parser.add_argument('-profile', '--profile', help="Turn on profiling", action='store_true', default=False)
args = vars(parser.parse_args())
model_path = args['outputdir']
if args['logdir'] is not None:
log_dir = args['logdir']
if args['device'] is not None:
C.device.try_set_default_device(C.device.gpu(args['device']))
data_path = args['datadir']
if not os.path.isdir(data_path):
raise RuntimeError("Directory %s does not exist" % data_path)
mean_data=os.path.join(data_path, 'CIFAR-10_mean.xml')
train_data=os.path.join(data_path, 'train_map.txt')
test_data=os.path.join(data_path, 'test_map.txt')
convnet_cifar10_dataaug(train_data, test_data, mean_data,
minibatch_size=args['minibatch_size'],
epoch_size=args['epoch_size'],
num_quantization_bits=args['quantized_bits'],
block_size=args['block_samples'],
warm_up=args['distributed_after'],
max_epochs=args['num_epochs'],
restore=not args['restart'],
log_to_file=args['logdir'],
num_mbs_per_log=100,
gen_heartbeat=True,
profiling=args['profile'],
tensorboard_logdir=args['tensorboard_logdir'],
model_path=model_path)
# Must call MPI finalize when process exit without exceptions
C.train.distributed.Communicator.finalize()