Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to train #8

Open
markpanizales opened this issue May 31, 2018 · 0 comments
Open

How to train #8

markpanizales opened this issue May 31, 2018 · 0 comments

Comments

@markpanizales
Copy link

I have followed your instructions up to the training part, however whenever I execute the train command I got the following results.

mark@mark-G11CD:/media/mark/Data_Application/darknetFaceID$ ./darknet detector train cfg/face.data cfg/face.cfg darknet19_448.conv.23 face layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 1 max 2 x 2 / 2 416 x 416 x 32 -> 208 x 208 x 32 2 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 3 max 2 x 2 / 2 208 x 208 x 64 -> 104 x 104 x 64 4 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 5 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 6 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 7 max 2 x 2 / 2 104 x 104 x 128 -> 52 x 52 x 128 8 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 9 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 10 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 11 max 2 x 2 / 2 52 x 52 x 256 -> 26 x 26 x 256 12 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 13 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 14 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 15 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 16 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 17 max 2 x 2 / 2 26 x 26 x 512 -> 13 x 13 x 512 18 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 19 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 20 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 21 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 22 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 23 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024 24 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024 25 route 16 26 reorg / 2 26 x 26 x 512 -> 13 x 13 x2048 27 route 26 24 28 conv 1024 3 x 3 / 1 13 x 13 x3072 -> 13 x 13 x1024 29 conv 30 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 30 30 detection Loading weights from darknet19_448.conv.23...Done! Learning Rate: 0.001, Momentum: 0.9, Decay: 0.0005 Loaded: 0.030896 seconds Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.438415, Avg Recall: -nan, count: 0 1: 9.846994, 9.846994 avg, 0.000100 rate, 0.156046 seconds, 1 images Loaded: 0.000030 seconds Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.388885, Avg Recall: -nan, count: 0 2: 7.840993, 9.646395 avg, 0.000100 rate, 0.101668 seconds, 2 images Loaded: 0.000020 seconds Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.304338, Avg Recall: -nan, count: 0 3: 4.401259, 9.121881 avg, 0.000100 rate, 0.101112 seconds, 3 images Loaded: 0.000020 seconds Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.214405, Avg Recall: -nan, count: 0 4: 1.664008, 8.376094 avg, 0.000100 rate, 0.090299 seconds, 4 images Loaded: 0.000022 seconds Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.146090, Avg Recall: -nan, count: 0 5: 0.564317, 7.594916 avg, 0.000100 rate, 0.095788 seconds, 5 images Loaded: 0.000020 seconds Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.091963, Avg Recall: -nan, count: 0 6: 0.164433, 6.851868 avg, 0.000100 rate, 0.094488 seconds, 6 images Loaded: 0.000020 seconds Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.062839, Avg Recall: -nan, count: 0 7: 0.074724, 6.174154 avg, 0.000100 rate, 0.089121 seconds, 7 images Loaded: 0.000020 seconds Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.041137, Avg Recall: -nan, count: 0 8: 0.054264, 5.562165 avg, 0.000100 rate, 0.094170 seconds, 8 images Loaded: 0.000022 seconds

I only have 1 class which is me and below is my face.cfg file I used.

`[net]
batch=1
subdivisions=1
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

learning_rate=0.001
max_batches = 120000
policy=steps
steps=-1,100,80000,100000
scales=.1,10,.1,.1

[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky

#######

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky

[route]
layers=-9

[reorg]
stride=2

[route]
layers=-1,-3

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky

[convolutional]
size=1
stride=1
pad=1
filters=30
activation=linear

[region]
anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
bias_match=1
classes=1
coords=4
num=5
softmax=1
jitter=.2
rescore=1

object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1

absolute=1
thresh = .6
random=0`

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant